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Motivation



Why Invariance?

In control:

e Sets appear naturally in three aspects: constraints,
uncertainties, design specifications

e Sets naturally describe system performance (domain of
attraction, accuracy, etc.)

e Connection to Lyapunov theory

e Invariance is key in e.g. Model Predictive Control to
guarantee resolvability

In computer science: applications in optimizing
compilers, design by contract, formal methods, program
correctness assurance.




Introduction:

Robustness to
Uncertainty

System model:
xt = flx,u,w).

The task is to find/verify a control law u which safely brings the state
x to the terminal set X7, in the presence of disturbance w.
How could we ensure that:

* state and control constraints are never violated?

* the state x eventually reaches X7?

* the state will always stay in X7 forall time t > T?

This is impossible in general, since the disturbance may be
unbounded.



Tube MPC separates this problem into
two parts:

+ Design a nominal trajectory
(f(t), ﬁ(_t)) which brings the state to ®

the set X € Xy Actual
Tu be MPC - Design a feedback law u(t, x) = e
u(t) + v(x(t) - )Z(t)) which keeps T
Approach x(t) close to x(t). X U
Invariance analysis can guarantee that — —

x(t) remains in some known set
containing x(t) for all disturbances
w(t) € W.




Positively Invariant Sets



Aset S is (positively) invariant with
respect to dynamics x* = f(x, w) if

(x,w) ESXW=>xtES.
Trivial examples: @, R™

Invariant Sets For any two invariant sets §; and S,
both §; U S, and §; N S, are

invariant.

The Minimal and Maximal invariant
sets are respectively the intersection
and union of all invariant sets.




Minimal

Invariant Set
Computation

The set of states reachable in finite time
from the origin is the minimal positively

invariant set, among all sets containing the
;

origin.

Even in the simple linear system x* =
Ax +w,w € W, this set is usually difficult
to compute exactly, unless:

W is convex, and
AS = al forsome a € [0,1) and s € N.
SFo=7 WOAW G @A),

where A@B={a+bla€AbeB}
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Source: Racovic et al.

S. V. Rakovi, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invariant approximations of the
minimal robust positively invariant set. IEEE Transactions on Automatic Control, 50(3):406-410,

March 2005.
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Polytopes



Polyhedra and

Polytopes

A polyhedron is the intersection of a finite
number of closed half-spaces, and can be
represented as P(G, g) =

{x e R" | Gx < g}.

The matrix G is called the template for a
polyhedron.

A polytope is a bounded polyhedron, and
can also be represented as the convex hull of
a finite set of vertices {vy, ..., vy }; P(V) =
Zividi | Zidi=1,4; =2 0}

Gy



Lattices

A poset (S, <) is aset S with partial order <.

A lattice is a poset (S, <) which for any
51,57 € S, there exist a greatest lower bound
(meet) s; A s, € S and a least upper bound
(join)s; Vs, €S.
* Vectors in R (R", <)

s x <yifx(@) <y@),Vi=1,..,n

© x Ayisthe elementwise minimum of x

andy, and x V y is the elementwise
maximum

A complete lattice is a poset which hasa glb
and lub for any subset of S.

* Extended real number line
(R U {+00, =00}, <)
+ Subsets of R" (ZRH, <)
s XcYifxeX =>x€eY

< inf{X, Y} =X nY,and
sup{X,Y}=XuY




Lattice of

Polytopes

For any two polytopes with the same template G, P(G, g,) and
P(G, g,), their intersection is also a polytope with template G.
Similarly, there is a unique minimal polytope with template G
containing both P(G, g,) and P (G, g,)-

The empty set @ can be represented with any template as
P(G, —0).

The set of polytopes with template G that are bounded above by

some given nonempty polytope P (G, gmax) form a complete
lattice.

Py VP,

P,

PLAP,

0 -1 Py




Knaster-Tarski

Theorem

Let (S, <) be a complete lattice, and let F: § — S be monotone
(order-preserving). Then the set of fixed points of F also form a
complete lattice.

+ Corollary: There exist a unique maximal and minimal fixed point of
F.

For the lattice (27", ), let R(X) = { f(x,w) | x € X,w € W},
and F(X) = X U R(X).The following three conditions are
equivalent:

- X is positively invariant w.r.t. the dynamics x* = f(x,w),w € W.
s R(X) S X.
+ X is afixed point of F.

The set of positively invariant sets forms a complete lattice, since it
is the set of fixed points for the monotone mapping F.



The sublattice of polytopes with template G in any nonempty
interval [P(G, g;), P(G, g,,)] form a complete lattice.

By the Knaster-Tarski theorem, the set of positively invariant sets
form a complete lattice (if nonempty).

Therefore if there is positively invariant

TaY P(G, ginv) € [P(G, 91),P(G, g,,)], then the positively invariant
M Il mal d nd polytopl;g]s with template G in tfl:e interval [P(G, g1), P (G, ginv)]
Maximal form a complete lattice.

Inva riant Subsetsof R®
|

POIytO pes / Positively \
Positively | el

[ Invariant
\ \ “G" Polytopes
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>

Sublattices of (R™, <)
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N.S.C. for

Invariance

Letxt = Ax + Ew Fw < f,and Gx < g for nonnegative vectors f
and g.Then Gx* < g iff there exist nonnegative matrices Y and M
such that:

Yg+Mf <g,

YG = GA,
MF = GE.

Observations:

B If?(G,g) is positively invariant, then
+ P(G,ag) is positively invariant for all @ > 1.

+ If the disturbance w is scaled by factor B = 0, P(G, Bg) is positively
invariant.

+ IfYg < gand YG = GA for some nonnegative Y, and if w is
bounded, then P(G, ag) is positively invariant for some
sufﬂmently large a.

+ These relations are linearin 4, E, Y, and M, so the set of all (4, E)
making th|s set posmvely invariant is itself a polytope in
Rnxn X R



Overview

Minimal Invariant Polytope Construction
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LTI system with bounded disturbance: x* = Ax + w, [lw|| < d.
Gy
Real Jordan decomposition 4 = V V=1, where each C; is a real Jordan block

C @ by
1 A1 = @ik jBi G

a1
Ayreal: ¢ ‘ B
A

Z1
Change of variables [ i ] =V-lx =z} = Gz + Wy, with || < d;
Explicit

I A, is real, then G; = [jl] Otherwise, Gy 41 defines the regular polygon in the figure

Template
Construction

G =diag(g)™* V=1, with g given explicitly or as a solution to a linear program

Imaginary

Gn
{x | IGx||, < 1} is positively invariant!

J.C. HENNET, Discrete-time Constrained Linear Systems.Control and Dynamic Systems,
Vol.71, C.T. Leondes Ed., Academic Press, pp.157-213.




Explicit
Invariant

Polytope
Construction

Observations:

+ With linearized dynamics x* = Ax + Bu + Ew, and assuming (4, B) is

controllable, the eigenvalues of (4 + BK) can be placed anywhere in C with the

proper choice of K.

(A + BK) is diagonalizable if each eigenvalue is unique, and so this polytope can

be found numerically via diagonalization.

* This algorithm gives an upper bound for the necessary number of facets of a

positively invariant polytopes as a function of the eigenvalue locations:
+ Each real eigenvalue contributes 2 facets.

Each pair of complex eigenvalues contributes m > 3 facets, with the pair of eigenvalues
inthe interior Ofa regular m-gon inscribed in the unit circle in the complex plane with a

vertexat1 +j
* Generalizes the “unit diamond”
condition [Bitsoris, 1988], which
guarantees a positively invariant
“box” if all eigenvalues A = a + j§
satisfy |a| + |B| < 1, the green
square in the figure.

1

Imag

George Bitsoris. Positive invariant polyhedral sets of discrete-time linear
systems. International Journal of Control, 47(6):1713-1726, 1988.

3 facets,
4 facets,
5 facets,
6 facets,

8 facets,
etc.
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Since the set of polyhedra with given
template G form a complete lattice, the

g0

Knaster-Tarski theorem guarantees a feo
minimal positively invariant polytope in this o=, ..
set. Let S be a closed and bounded set of maimize 1791413 5.¢.
polytopes with template G. Fortm1,..,n
el g1 < el G(Ax, + Ew),

Minimal Iterative algorithm (Kleene): ox < g™
Invariant

If a function f commutes with V, then the Fw s f
minimal fixed point of f containing set X e

Polytope can be computed as: fdor

Xo Vv f(XO) v f(f(XO)) Vo Linear program which computes
Start with an initial set Xy € S. For R() for polyhedral W.
k=0,1,.., compute Xjp1 = X VR(Xy)
until some convergence criterion is met.
Xo = Vien Xk is the minimal positively
invariant element of § which contains X,.




Example

System: discretized harmonic oscillator

o= [ 08 0Ok (02w w il < 1.

Closing the loop with linear full state feedback
from LQR,

L0791 0445
= [Coszs 03361+
A=vev,withv = [ 0278 ~0882] 4ng
c=[ 0564 0477 o
~0477 0564/
Withm=6_ 0

cos(m/3)  sin(w/3)

cos(2m/3) sin(2m/3)| _,
cos(3m/3) sin(3m/3)
cos(4m/3) sin(4m/3)
cos(57/3) sin(5m/3)

The mapping Xy = X V R(X}) is performed
iteratively starting with X, = {0}.

Res

The closed-loop eigenvalues

A =0.564 %+ j0.477, are in the
interior of the reqular 6-gon, so 6
facets are sufficient.




Overview

Robust Invariant Set Definitions
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Robust Controlled Invariant Set

We consider a Discrete Linear Time Invariant (DLTI) system:
xT = Ax + Bu + Dp,

where xeR", pe P={peR?:Rp<r}and ueld = {uecR™: Hu< h}
are “specification” polytopes.

Controlled Robust Positively Invariant Set
A set X is called controlled robust positively invariant (CRPI) if:

X={xeR":Juelst Ax+Bu+Dpe X, Vpe P}

21



Robust Invariant Set

Robust Controlled Invariant Set

A set X is called controlled robust positively invariant (CRPI) if:

X={xeR":Juelst Ax+Bu+Dpe X, Vpe P}

Now consider that some control law exists and the system reduces to an
autonomous one:
xT = Ax + Dp.

Robust Positively Invariant Set

A set X is called robust positively invariant (RPI) if:

Ax+Dpe X, VxeX, peP.

22



ys to Synthesize an Invariant Set

/ Set-based

Invariant
Set
Synthesis

/

e Optimization-based methods rely on an explicit optimization problem (LP,
LMI, etc.) to find X

o Set-based methods rely on polytopic operations!, i.e. computational
geometry.

IThese operations may implicitly involve an optimization, but what differentiates
set-based methods is that people don’t “talk” about it — they just assume that one can
compute e.g. the Pontryagin difference.

23



Overview

Minimal Robust Positively Invariant Set Computation

24



One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Equivalent RPI Condition

X(g) = {x: Gx < g} RPI & 0(G; | AX(g)) + o(Gi | DP) < o(Gj | X(g)),

where g € R™ and o(z | S) £ sup{y "z :y € S} is the support function of
(some) set S.

Note: o(G; | X(g)) < g with < < facet i is redundant.

25



One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Existence of an RPI Set
Fix G in X(g) = {x: Gx < g} (i.e. pick a “template”). Assumptions:

Al. P contains the origin

A2. |A\| <1V € spec(A)

A3. The interior of X’ contains the origin

A4. For the chosen G, a g exists such that X(g) is RPI

Then there exists a g* such that

o(Gi | AX(g")) +0(G | DP) =0o(G;i | X(g")) =g" Vi=1,...,n,.
X(g*) is the min-volume RPI set, i.e. g* achieves minimum ||g*||;.
Fixed-Point Solution Uniqueness

Given assumptions A1-A4, the g* in the above statement is unique. 2



One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Existence of an RPI Set

o(Gi | AX(g)) +0(Gi | DP) = o(Gi | X(g")) =&" Vi=1,....ng.
X(g*) is the min-volume RPI set, i.e. g* achieves minimum ||g*||;.

g* can be computed iteratively:

Algorithm 1 Iterative computation of g*.
Set g+ 0
while True do
g« o(G | AX(g))+o(G |DP)i=1,..,ng
if & — &"[loc < €tol then

return g*

g« g*

27



One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

e g* can also be computed as a one-shot LP (main contribution of [1])
o Let ¢i(g) = 0(Gi | AX(g)), di = o(Gi | DP), bi(g) = o(Gi | X(g)). Core
realization (thanks to uniqueness of g*):

g" =arg mgin{llglll :c(g)+d=0b(g)}=arg mgax{l\glh : c(g) +d = b(g)}

e Recalling that b(g) < g, the above is readily converted to an LP:

g"=c"+d*, where (c*,d*) = arg maximize i ¢+ di
senny =
subject to ¢ < GAE
Gt <c+d
di < GDw'
Fu' < g.

28



One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

’ Let ¢i(g) = o(G; | AX(g)), di = o(G; | DP), bi(g) = o(G; | X(g)) ‘

n
g" =c" +d", where (c*,d") = arg maximize zg: ¢ +d;
T
subject to ¢ < GAE
G¢ <c+d
di < G;DW'
Fu' <g.

The first two constraints evaluate ¢;(g) and the last two evaluate d;. The
first constraint holds with equality at optimality, since we want to maximize
¢i. The RHS of the second constraint = g* at optimality, therefore the
second constraint enforces P& < g*, i.e. the definition of b(g*).
29



One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Image credit: NASA/JPL-Caltech




One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Parameters [2]:

Myer = 1905 kg
g =—37114 m/s’
g = 9.81 m/s’
lp =2255 Tpax = 3.1 kN

Y
b

World frame ¢p=27deg n=06
Dynamics:
(%, y) = (va, vy) Letting T <— T 4+ mg be the gravity compensated

(%, %) = (T, T,)/m+ g control, the system is linearized about

H(Txa Ty)H2 ()_(7}7’ Vi, Vy, m) = (050=0707 mwet) and

m= IspgeTw (TX7 Ty):(070)

30



One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Synthesize an LQR stabilizing controller:

State scaling: DX:{1 1 0.05 0.05 0.1}

Input scaling: D, = {nTmax COS P SiN max N T max COS qb}
State penalty Q = D71QD; with Q € {I5, 10/}

[ )
e |nput penalty R = D;”%DX with R = b
1.0
0.5
% 00
£
—0.5
-1.0

-1.0 -05 0.0 0.5 1.0 31
Real



One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

N PN

Direct application of LP on slide 29 (Q =I5, Q = 10/):

0.2 = 0.0251

E B

c

2 0.0 2 0.000

8 )

o g

= S

—0.24 = —0.0251
-0.2 0.0 0.2 -0.2 0.0 0.2
z position [m] x position [m]

= 0.021 = 0.021
~ —~
£ £
= z
£ 0.00- £ 0.001
o o
2 g

= >
= —0.024 = —0.024

—0.2 0.0 0.2 —0.02 0.00 0.02
y position [m] v, velocity [m/s]

32



One-Step Minimal RPlI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

The one-shot LP of slide 29 and the iterative algorithm of slide 27 are

identical...
— 029 = 0.025
E ~
= E
S >
2 0.0 £ 0.000
<} K]
3 g
® 021 < —0.025
0.2 0.0 0.2 0.2 0.0 0.2
x position [m] x position [m]
- 0.02 & 0.021
~ ~
E, £
> >
£ 0.001 £ 0.00-
o °
[ (%
> >
= _0.02 = 0,02
—0.2 0.0 0.2 —0.02  0.00 0.02
y position [m] v, velocity [m/s]
... but iterative takes ~ 315 s while one-shot takes ~ 0.2 s! 33



Overview

Maximal Controlled Robust Positively Invariant Set Computation
(Independent Noise)

34



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

We consider Discrete Linear Time Invariant (DLTI) system:
xT = Ax + Bu + Dp,

where x e R", pe P={peR?:Ro<r}anduecld = {uecR™: Hu< h}
are “specification” polytopes.
Controlled Robust Positively Invariant Set

A set X is called controlled robust positively invariant (CRPI) if:

X={xeR":Juelst Ax+Bu+Dpe X, Vpe P}

Maximal CRPI Set

A set X, C X is called maximal CRPI (maxCRPI) if it is CRPI and
contains all other CRPI sets in X, i.e. Xcgrpl € Xoo VAcrp € & RCPI [3].
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

maxCRPI Set Convexity

Given the system x* = Ax + Bu + Dp where p € P, u € U, consider X the
set of “safe” states. If X',’P,U are convex then the associated maxCRPI set
X IS convex.

Recall the maxCRPI set definition:
Xoo={x€R":Juelst. Ax+Bu+Dpe X, Vpe P}

The definition is recursive (X on both sides) = compute X, iteratively.

Core step: preimage set computation.

36



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Preimage Set
Pre(S) £ {x | 3u €U, Ax+ Bu+ Dp € S Vp € P}
Remark: & CRPI < S C Pre(S).

Vp € P
IR % /}\\
ﬁ@. S

x€Pre(S) Ax+Bu+DpeS

Pre(S)

37



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

maxCRPI Iterative Computation

Execute the following dynamic programming-type algorithm:

To=X
Tiy1 =Pre(Zy) NIk k=0,1,2,..

STOP if Zy 1 = Zy. Then, Z) = Z, is the maxCRPI set.

LV P\ VAl Ye

(Proxy for convergence: distance between the islands.) 38



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Preimage Set Computation
Pre(S) = ((Se (DP)) & (—BU))A
where?:
e Minkowski sum: A@B={a+b:aec A be B},
e Pontryagin difference: A© B ={a:a+ be AVbe B}, O(n°)
e Direct mapping: MA ={Ma:ac A},
e Inverse mapping: AM = {a: Ma € A}, O(n°)

Minkowski sum is the most expensive operation (highest facet count, cannot
be pre-computed).

2n is the polytope facet count and c is a coefficient.

39



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Pre(S) = [(S&(D o P))®B(—Bold)] o A

For independent disturbances, Pontryagin difference (O(n¢)) and especially
Minkowski sum (O(c")) are expensive®

0.45

— [(So(DoP)@(-Boll)]o A

o (SO (DoP) @ (-Botd)]oA

e
098 (Se(DoP) e

Operation time [s]

# defining inequalities

3n is the polytope facet count and c is a coefficient.

40



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

However, may wish to render invariant only part of the state. Examples:

e Some states do not make physical sense to render invariant (our case:
skycrane mass)

e Some states may correspond to the controller (e.g. integrator)

In this case we want to render invariant the output y = Cx.

Controlled Robust Positively Output Invariant Set
The set X is Controlled Robust Positively Output Invariant (CRPOI) if:

Y={y:Juelst. Ax+Bu+Dpe)Vxst y=Cx,VpeP}

41



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Controlled Robust Positively Output Invariant Set
The set Y is Controlled Robust Positively Output Invariant (CRPOI) if:

Y={y:JuelUst. C(Ax+ Bu+Dp)e Y Vxst. y=Cx,VpeP}

Using Ct the pseudoinverse of C, we can write:
Y={y:Juelst C(ACy +N(C))+ Bu+ Dp)CY Vpe P},

where N(C) is the nullspace of C, i.e. N(C) = {x: Cx = 0}. The preimage
set can be computed similarly to before:

Pre(Y) = (¥ © (CDP @ CAN(C))) @ (—CBU))CACT

42



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

The following algorithm summarizes maxCRPOI set computation®.

Algorithm 2 Iterative computation of maxCRPOI set V..
Set ) to the “safe outputs” specification

while True do
Pre()) «+ ((¥ © (CDP @ CAN(C))) @ (- CBU))CACT
Yt =YnPre(Y)
if Y C Y and Y* C )., then
return YV, «— Y+

Y+t

4If S = {x: Px < p}, we denote S, = {x : Px < p + €1} the e-dilation of S. In
practical, dilation is a more robust stopping criterion than equality (™ = ) which is
prone to numerical inaccuracy.

43



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Going back to the skycrane example, consider the specifications:

e +10 cm position error (in both x and y)
e +10 cm/s velocity error in x, =1 cm/s velocity error in y
e £50 N disturbance force (in both x and y)
e Input constraint set given by the rocket motor specs [2] (visualized below)
u
6000
4000
Z 2000
=
0
—2000

—6000 —4000 —2000 0 2000 4000 6000
T N] 44



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Direct application of algorithm on slide 43:

0.14 — 0.1
E 3
S >
2 0.0 £ 007
8 )
= g
= ]
_01 L T T T N _01 L T T T
—0.1 0.0 0.1 -0.1 0.0 0.1
x position [m] x position [m]
— 0.014 — 0.01
< <
£ £
oy z
£ 0.001 £ 0.001
° °
[ [
> >
= =
= —0.014! : 7 0014t : |
—0.1 0.0 0.1 —0.1 0.0 0.1

y position [m] vy velocity [m/s]
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Overview

Maximal Controlled Robust Positively Invariant Set Computation (Dependent
Noise)

46



Maximal RCI Computation With Dependent Noise

Rakovic et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”, 2006. [4]

What happens if the disturbance is state and/or input dependent?

p € Proj, P(x,u) = {0 = (p,x,u) € RITM™ RO < r}

p

P(x)

Sy

P

47



Maximal RCI Computation With Dependent Noise

Rakovic et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”, 2006. [4]

What happens if the disturbance is state and/or input dependent?
p € Proj, P(x,u) = {0 = (p,x,u) € RITMM RO < r}

In this case Pre(X) can be computed in several steps:

ZEXxU

W £ {(x,u,p) : (x,u) € Z,p € P(x,u)}

® £ {(x,u,p) : Ax + Bu + Dp € S}

> 2 {(x,u) € Z | Ax+ Bu+ Dp € S Vp € P(x,u)}

= Z\ Proj, ,(W\ @)
= Pre(S) = Proj,(¥)

When sets are polytopes, all operations are possible via computational
geometry.
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Maximal RCI Computation With Dependent Noise

Rakovic et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”, 2006. [4]

¥ = 2\ Proj, ,(W\®).

Regiondiff operation (\) [5]) generates a union of polytopes, which suffers
from severe “fracturing” of convex regions.

Velocity [m/s]
o

-05 -0.49 -048 -047 -046 -0.45 -0.44 -0.43 -0.42
Position [m]

Furthermore, Proj, , is expensive when dim(WV) is large! "



Overv

Conclusion
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Conclusion

Minimal RPI computation boils down to a one-shot LP [1]

e Maximal CRPI computation for generic polytopes has exponential complexity
in set-based methods due to the Minkowski sum

Maximal CRPI computation for dependent noise is computationally difficult

due to non-convexity

Further reading in [6, 7].
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Thank You For Your Attention!
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Polyhedral

Lyapunov
Functions

+ Consider the system x(t + 1) = A(t)x(t), where A(t) comes

from a compact set. The following three statements are
equivalent:

* The system is asymptotically stable

* The system is exponentially stable

* The system has a polyhedral Lyapunov function V(x) = ||Gx|| s

+ Polyhedra are expressive enough to prove exponential stability of

a linear system, though it may be difficult to find a suitable “G".
* Forthe simple case x(t + 1) = Ax(t), aLyapunov function can be
found from the Jordan decomposition of A.
+ With a known quadratic Lyapunov function, a polytope can
approximate the ellipsoidal level set arbitrarily well.



+ For each polytope of the form P = {x € R™ | Gx < 1}, thereisa
unique dual polytope P* = co{G ey, ..., GTe,,} whose interior
contains the origin.

* Important properties:
* For any polytope P whose interior contains the origin, P** = P.
+ Order is reversed when taking the dual, i.e. P; € P, = P; € P;.

Lattices ofv_ * Since the set of H-polytopes with template G form a complete
lattice, so do their dual polytopes,
POIytOpeS {co{a,GTey, o, anGTen} |1 0 < @; < dpax }-
PiAP;
~
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