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Why Invariance?

In control:

• Sets appear naturally in three aspects: constraints,

uncertainties, design specifications

• Sets naturally describe system performance (domain of

attraction, accuracy, etc.)

• Connection to Lyapunov theory

• Invariance is key in e.g. Model Predictive Control to

guarantee resolvability

In computer science: applications in optimizing

compilers, design by contract, formal methods, program

correctness assurance.

3



Introduction: 
Robustness to 
Uncertainty 

System model: 

𝑥+ = 𝑓 𝑥, 𝑢, 𝑤 . 

The task is to find/verify a control law 𝑢 which safely brings the state 
𝑥 to the terminal set 𝒳𝑇, in the presence of disturbance 𝑤. 

How could we ensure that: 
 state and control constraints are never violated? 

 the state 𝑥 eventually reaches 𝒳𝑇? 

 the state will always stay in 𝒳𝑇  for all time 𝑡 ≥ 𝑇? 

This is impossible in general, since the disturbance may be 
unbounded.  
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Tube MPC 
Approach 

Tube MPC separates this problem into 
two parts: 

 Design a nominal trajectory 
𝑥 𝑡 , 𝑢 𝑡  which brings the state to 

the set 𝒳 𝑇 ⊂ 𝒳𝑇  

 Design a feedback law 𝑢 𝑡, 𝑥 =
𝑢 𝑡 + 𝑣 𝑥 𝑡 − 𝑥 𝑡  which keeps 
𝑥 𝑡  close to 𝑥 𝑡 . 

Invariance analysis can guarantee that 
𝑥 𝑡  remains in some known set 
containing 𝑥 𝑡  for all disturbances 
𝑤 𝑡 ∈ 𝒲. 
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Invariant Sets 

A set 𝒮 is (positively) invariant with 
respect to dynamics 𝑥+ = 𝑓 𝑥, 𝑤  if 

𝑥, 𝑤 ∈ 𝒮 × 𝒲 ⇒ 𝑥+ ∈ 𝒮. 

 Trivial examples: ∅, ℝ𝑛 

For any two invariant sets 𝒮1 and 𝒮2, 
both 𝒮1 ∪ 𝒮2 and 𝒮1 ∩ 𝒮2 are 
invariant. 

The Minimal and Maximal invariant 
sets are respectively the intersection 
and union of all invariant sets. 
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Minimal 
Invariant Set 
Computation 

The set of states reachable in finite time 
from the origin is the minimal positively 
invariant set, among all sets containing the 
origin. 

Even in the simple linear system 𝑥+ =
𝐴𝑥 + 𝑤, 𝑤 ∈ 𝒲, this set is usually difficult 
to compute exactly, unless: 

 𝒲 is convex, and  

 𝐴𝑠 = 𝛼𝐼 for some 𝛼 ∈ 0,1  and 𝑠 ∈ ℕ. 

⇒ ℱ∞ =
1

1 − 𝛼
𝒲 ⊕ 𝐴𝒲 ⊕ ⋯ ⊕ 𝐴𝑠−1 , 

where 𝒜 ⊕ ℬ = 𝑎 + 𝑏 𝑎 ∈ 𝒜, 𝑏 ∈ ℬ . 
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Polyhedra and 
Polytopes 

A polyhedron is the intersection of a finite 
number of closed half-spaces, and can be 
represented as 𝒫 𝐺, 𝑔 =
𝑥 ∈ ℝ𝑛 | 𝐺𝑥 ≤ 𝑔 .  

 The matrix 𝐺 is called the template for a 
polyhedron. 

A polytope is a bounded polyhedron, and 
can also be represented as the convex hull of 
a finite set of vertices 𝑣1, … , 𝑣𝑁 ; 𝒫 𝑉 =
 𝑣𝑖𝜆𝑖𝑖  |   𝜆𝑖𝑖 = 1, 𝜆𝑖 ≥ 0 . 
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Lattices 

A poset 𝒮, ≤  is a set 𝒮 with partial order ≤. 

A lattice is a poset 𝒮, ≤  which for any 
𝑠1, 𝑠2 ∈ 𝒮, there exist a greatest lower bound 
(meet) 𝑠1 ∧ 𝑠2 ∈ 𝒮 and a least upper bound 
(join) s1 ∨ 𝑠2 ∈ 𝒮. 

 Vectors in ℝ𝑛 ℝ𝑛, ≤  
 𝑥 ≤ 𝑦 if 𝑥 𝑖 ≤ 𝑦 𝑖 , ∀𝑖 = 1,… , 𝑛 

 𝑥 ∧ 𝑦 is the elementwise minimum of 𝑥 
and 𝑦, and 𝑥 ∨ 𝑦 is the elementwise 
maximum 

A complete lattice is a poset which has a glb 
and lub for any subset of 𝒮. 

 Extended real number line 
ℝ ∪ +∞, −∞ , ≤  

 Subsets of ℝ𝑛 2ℝ𝑛
, ⊆  

 𝒳 ⊆ 𝒴 if 𝑥 ∈ 𝒳 ⇒ 𝑥 ∈ 𝒴 

 inf 𝒳,𝒴 = 𝒳 ∩ 𝒴, and 
sup 𝒳, 𝒴 = 𝒳 ∪ 𝒴 
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Lattice of 
Polytopes 

For any two polytopes with the same template 𝐺, 𝒫 𝐺, 𝑔1  and 
𝒫 𝐺, 𝑔2 , their intersection is also a polytope with template 𝐺. 
Similarly, there is a unique minimal polytope with template 𝐺 
containing both 𝒫 𝐺, 𝑔1  and 𝒫 𝐺, 𝑔2 . 

The empty set ∅ can be represented with any template as 
𝒫 𝐺, −∞ .  

The set of polytopes with template 𝐺 that are bounded above by 
some given nonempty polytope 𝒫 𝐺, 𝑔𝑚𝑎𝑥  form a complete 
lattice. 
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Knaster-Tarski 
Theorem 

Let 𝒮, ≤  be a complete lattice, and let ℱ: 𝒮 → 𝒮 be monotone 
(order-preserving). Then the set of fixed points of ℱ also form a 
complete lattice. 

 Corollary: There exist a unique maximal and minimal fixed point of 
ℱ. 

For the lattice 2ℝ𝑛
, ⊆ , let ℛ 𝒳 = 𝑓 𝑥, 𝑤 𝑥 ∈ 𝒳, 𝑤 ∈ 𝒲 , 

and ℱ 𝒳 = 𝒳 ∪ ℛ(𝒳). The following three conditions are 
equivalent: 

 𝒳 is positively invariant w.r.t. the dynamics 𝑥+ = 𝑓 𝑥, 𝑤 , 𝑤 ∈ 𝒲. 

 ℛ 𝒳 ⊆ 𝒳. 

 𝒳 is a fixed point of ℱ. 

The set of positively invariant sets forms a complete lattice, since it 
is the set of fixed points for the monotone mapping ℱ.  
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Minimal and 
Maximal 
Invariant 
Polytopes 

The sublattice of polytopes with template 𝐺 in any nonempty 
interval 𝒫 𝐺, 𝑔𝑙 , 𝒫 𝐺, 𝑔𝑢  form a complete lattice. 

By the Knaster-Tarski theorem, the set of positively invariant sets 
form a complete lattice (if nonempty).  

Therefore if there is positively invariant 
𝒫 𝐺, 𝑔𝑖𝑛𝑣 ∈ 𝒫 𝐺, 𝑔𝑙 , 𝒫 𝐺, 𝑔𝑢 , then the positively invariant 
polytopes with template 𝐺 in the interval 𝒫 𝐺, 𝑔𝑙 , 𝒫 𝐺, 𝑔𝑖𝑛𝑣  
form a complete lattice. 
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“𝐺” 
Polytopes 

Sublattices of ℝ𝑛 , ⊆  



N.S.C. for 
Invariance 
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Let 𝑥+ = 𝐴𝑥 + 𝐸𝑤, 𝐹𝑤 ≤ 𝑓, and 𝐺𝑥 ≤ 𝑔 for nonnegative vectors 𝑓 
and 𝑔. Then 𝐺𝑥+ ≤ 𝑔 iff there exist nonnegative matrices 𝑌 and 𝑀 
such that: 

𝑌𝑔 + 𝑀𝑓 ≤ 𝑔, 
𝑌𝐺 = 𝐺𝐴, 
𝑀𝐹 = 𝐺𝐸. 

Observations: 

 If 𝒫 𝐺, 𝑔  is positively invariant, then 
 𝒫 𝐺, 𝛼𝑔  is positively invariant for all 𝛼 ≥ 1. 

 If the disturbance 𝑤 is scaled by factor 𝛽 ≥ 0, 𝒫 𝐺, 𝛽𝑔  is positively 
invariant. 

 If 𝑌𝑔 < 𝑔 and 𝑌𝐺 = 𝐺𝐴 for some nonnegative 𝑌, and if 𝑤 is 
bounded, then 𝒫 𝐺, 𝛼𝑔  is positively invariant for some 
sufficiently large 𝛼. 

  These relations are linear in 𝐴, 𝐸, 𝑌, and 𝑀, so the set of all 𝐴, 𝐸  
making this set positively invariant is itself a polytope in 
ℝ𝑛×𝑛 × ℝ𝑛×𝑝. 
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Explicit 
Template 
Construction 

LTI system with bounded disturbance: 𝑥+ = 𝐴𝑥 + 𝑤, 𝑤 ≤ 𝑑. 

 Real Jordan decomposition 𝐴 = 𝑉
𝐶1

⋱
𝐶𝑟

𝑉−1, where each 𝐶𝑖  is a real Jordan block. 

 𝝀𝒊 real:  𝐶𝑖 =

𝜆𝑖 1

𝜆𝑖 ⋱

⋱ 1
𝜆𝑖

.  𝝀𝒊,𝒊+𝟏 = 𝜶𝒊 ± 𝒋𝜷𝒊:  𝐶𝑖 =

𝛼𝑖 𝛽𝑖

−𝛽𝑖 𝛼𝑖
𝐼

𝛼𝑖 𝛽𝑖

−𝛽𝑖 𝛼𝑖
⋱

⋱ 𝐼
𝛼𝑖 𝛽𝑖

−𝛽𝑖 𝛼𝑖

. 

 Change of variables 

𝑧1

⋮
𝑧𝑛

= 𝑉−1𝑥 ⇒ 𝑧𝑖
+ = 𝐶𝑖𝑧𝑖 + 𝑤 𝑖, with 𝑤 𝑖 ≤ 𝑑 𝑖. 

 If 𝜆𝑖  is real, then 𝐺 𝑖 =
1

−1
. Otherwise, 𝐺 𝑖,𝑖+1 defines the regular polygon in the figure. 

 𝐺 = 𝑑𝑖𝑎𝑔 𝑔 −1
𝐺 1

⋱
𝐺 𝑛

𝑉−1, with 𝑔 given explicitly or as a solution to a linear program. 

 𝑥 | 𝐺𝑥 ∞ ≤ 1  is positively invariant! 
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J.C. HENNET, Discrete-time Constrained Linear Systems.Control and Dynamic Systems, 
Vol.71, C.T. Leondes Ed., Academic Press, pp.157-213. 



Explicit 
Invariant 
Polytope 
Construction 

Observations: 

 With linearized dynamics 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑤, and assuming 𝐴, 𝐵  is 
controllable, the eigenvalues of 𝐴 + 𝐵𝐾  can be placed anywhere in ℂ with the 
proper choice of 𝐾. 

 𝐴 + 𝐵𝐾  is diagonalizable if each eigenvalue is unique, and so this polytope can 
be found numerically via diagonalization. 

 This algorithm gives an upper bound for the necessary number of facets of a 
positively invariant polytopes as a function of the eigenvalue locations: 

 Each real eigenvalue contributes 2 facets.  

 Each pair of complex eigenvalues contributes 𝑚 ≥ 3 facets, with the pair of eigenvalues 
in the interior of a regular 𝑚-gon inscribed in the unit circle in the complex plane with a 
vertex at 1 + 𝒋0. 
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3 facets, 
4 facets, 
5 facets, 
6 facets, 
7 facets , 
8 facets, 
etc. 

 Generalizes the “unit diamond” 
condition [Bitsoris, 1988], which 
guarantees a positively invariant 
“box” if all eigenvalues 𝜆 = 𝛼 + 𝒋𝛽 
satisfy 𝛼 + 𝛽 < 1, the green 
square in the figure. 

George Bitsoris. Positive invariant polyhedral sets of discrete-time linear 
systems. International Journal of Control, 47(6):1713–1726, 1988. 



Minimal 
Invariant 
Polytope 

Since the set of polyhedra with given 
template 𝐺 form a complete lattice, the 
Knaster-Tarski theorem guarantees a 
minimal positively invariant polytope in this 
set. Let 𝒮 be a closed and bounded set of 
polytopes with template 𝐺. 
 
Iterative algorithm (Kleene): 
If a function 𝑓 commutes with ∨, then the 
minimal fixed point of 𝑓 containing set 𝒳0 
can be computed as: 

𝒳0 ∨ 𝑓 𝒳0 ∨ 𝑓 𝑓 𝒳0 ∨ ⋯ . 

Start with an initial set 𝒳0 ∈ 𝒮. For 
𝑘 = 0, 1, …, compute 𝒳𝑘+1 = 𝒳𝑘 ∨ ℛ 𝒳𝑘  
until some convergence criterion is met. 
𝒳∞ =  𝒳𝑘𝑘∈ℕ  is the minimal positively 
invariant element of 𝒮 which contains 𝒳0. 
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𝑔 0 ← 0 
𝑘 ← 0 

For 𝑘 = 0, 1, … , 𝑘𝑚𝑎𝑥  

 maximize
𝑔 𝑘+1 ,𝑥𝑖,𝑤𝑖

1𝑇𝑔 𝑘+1  𝑠. 𝑡. 

 For 𝑖 = 1, … , 𝑛 

  𝑒𝑖
𝑇𝑔 𝑘+1 ≤ 𝑒𝑖

𝑇𝐺 𝐴𝑥𝑖 + 𝐸𝑤𝑖 , 

  𝐺𝑥𝑖 ≤ 𝑔 𝑘 , 

  𝐹𝑤𝑖 ≤ 𝑓. 

 End For 

End For 

Linear program which computes 
ℛ 𝒳𝑘  for polyhedral 𝒲. 



Example 

System: discretized harmonic oscillator 

𝑥+ =
0.8 0.6

−0.6 0.8
𝑥 +

0.2
0.6

𝑢 + 𝑤, 𝑤 ∞ ≤ 1. 

Closing the loop with linear full state feedback 
from LQR, 

𝑥+ =
0.791 0.445

−0.626 0.336
𝑥 + 𝑤. 

𝐴 = 𝑉𝐶𝑉−1, with 𝑉 =
−0.278 −0.582
0.764 0

 and 

𝐶 =
0.564 0.477

−0.477 0.564
. 

With 𝑚 = 6, 

𝐺 =

1 0
cos 𝜋/3 sin 𝜋/3

cos 2𝜋/3 sin 2𝜋/3

cos 3𝜋/3 sin 3𝜋/3

cos 4𝜋/3 sin 4𝜋/3

cos 5𝜋/3 sin 5𝜋/3

𝑉−1. 

The mapping 𝒳𝑘+1 = 𝒳𝑘 ∨ ℛ 𝒳𝑘  is performed 
iteratively starting with 𝒳0 = 0 . 
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The closed-loop eigenvalues 
𝜆 = 0.564 ± 𝒋0.477, are in the 
interior of the regular 6-gon, so 6 
facets are sufficient. 
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Robust Controlled Invariant Set

We consider a Discrete Linear Time Invariant (DLTI) system:

x+ = Ax + Bu + Dp,

where x ∈ Rn, p ∈ P = {p ∈ Rd : Rp ≤ r} and u ∈ U = {u ∈ Rm : Hu ≤ h}
are “specification” polytopes.

Controlled Robust Positively Invariant Set

A set X is called controlled robust positively invariant (CRPI) if:

X = {x ∈ Rn : ∃u ∈ U s.t. Ax + Bu + Dp ∈ X , ∀p ∈ P}.
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Robust Invariant Set

Robust Controlled Invariant Set

A set X is called controlled robust positively invariant (CRPI) if:

X = {x ∈ Rn : ∃u ∈ U s.t. Ax + Bu + Dp ∈ X , ∀p ∈ P}.

Now consider that some control law exists and the system reduces to an

autonomous one:

x+ = Ax + Dp.

Robust Positively Invariant Set

A set X is called robust positively invariant (RPI) if:

Ax + Dp ∈ X , ∀x ∈ X , p ∈ P.

Goal: find an RPI X .
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Two Ways to Synthesize an Invariant Set

• Optimization-based methods rely on an explicit optimization problem (LP,

LMI, etc.) to find X
• Set-based methods rely on polytopic operations1, i.e. computational

geometry.
1These operations may implicitly involve an optimization, but what differentiates

set-based methods is that people don’t “talk” about it – they just assume that one can

compute e.g. the Pontryagin difference.
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Equivalent RPI Condition

X (g) = {x : Gx ≤ g} RPI⇔ σ(Gi | AX (g)) + σ(Gi | DP) ≤ σ(Gi | X (g)),

where g ∈ Rng and σ(z | S) , sup{yT z : y ∈ S} is the support function of

(some) set S.

Note: σ(Gi | X (g)) ≤ gi with < ⇔ facet i is redundant.
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Existence of an RPI Set

Fix G in X (g) = {x : Gx ≤ g} (i.e. pick a “template”). Assumptions:

A1. P contains the origin

A2. |λ| < 1 ∀λ ∈ spec(A)

A3. The interior of X contains the origin

A4. For the chosen G , a g exists such that X (g) is RPI

Then there exists a g∗ such that

σ(Gi | AX (g∗)) + σ(Gi | DP) = σ(Gi | X (g∗)) = g∗ ∀i = 1, ..., ng .

X (g∗) is the min-volume RPI set, i.e. g∗ achieves minimum ‖g∗‖1.

Fixed-Point Solution Uniqueness

Given assumptions A1-A4, the g∗ in the above statement is unique.
26



One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Existence of an RPI Set

σ(Gi | AX (g∗)) + σ(Gi | DP) = σ(Gi | X (g∗)) = g∗ ∀i = 1, ..., ng .

X (g∗) is the min-volume RPI set, i.e. g∗ achieves minimum ‖g∗‖1.

g∗ can be computed iteratively:

Algorithm 1 Iterative computation of g∗.

Set g ← 0

while True do

g∗i ← σ(Gi | AX (g)) + σ(Gi | DP) i = 1, ..., ng
if ‖g − g∗‖∞ < εtol then

return g∗

g ← g∗

27



One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

• g∗ can also be computed as a one-shot LP (main contribution of [1])

• Let ci (g) = σ(Gi | AX (g)), di = σ(Gi | DP), bi (g) = σ(Gi | X (g)). Core

realization (thanks to uniqueness of g∗):

g∗ = arg min
g
{‖g‖1 : c(g) + d = b(g)} = arg max

g
{‖g‖1 : c(g) + d = b(g)}

• Recalling that b(g) ≤ g , the above is readily converted to an LP:

g∗ = c∗ + d∗, where (c∗, d∗) = arg maximize
{ci ,di ,ξi ,ωi}
∀i∈{1,...,ng}

ng∑
i=1

ci + di

subject to ci ≤ GiAξ
i

Gξi ≤ c + d

di ≤ GiDω
i

Fωi ≤ g .

28



One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Let ci (g) = σ(Gi | AX (g)), di = σ(Gi | DP), bi (g) = σ(Gi | X (g))

g∗ = c∗ + d∗, where (c∗, d∗) = arg maximize
{ci ,di ,ξi ,ωi}
∀i∈{1,...,ng}

ng∑
i=1

ci + di

subject to ci ≤ GiAξ
i

Gξi ≤ c + d

di ≤ GiDω
i

Fωi ≤ g .

The first two constraints evaluate ci (g) and the last two evaluate di . The

first constraint holds with equality at optimality, since we want to maximize

ci . The RHS of the second constraint = g∗ at optimality, therefore the

second constraint enforces Pξi ≤ g∗, i.e. the definition of b(g∗).
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Image credit: NASA/JPL-Caltech
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Parameters [2]:

mwet = 1905 kg

g = −3.7114 m/s2

ge = 9.81 m/s2

Isp = 225 s Tmax = 3.1 kN

φ = 27 deg n = 6

Dynamics:

(ẋ , ẏ) = (vx , vy )

(v̇x , v̇y ) = (Tx ,Ty )/m + g

ṁ = −‖(Tx ,Ty )‖2

Ispge cosφ

Letting T ← T + mg be the gravity compensated

control, the system is linearized about

(x̄ , ȳ , v̄x , v̄y , m̄) = (0, 0, 0, 0,mwet) and

(T̄x , T̄y ) = (0, 0).
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Synthesize an LQR stabilizing controller:

• State scaling: Dx =
[
1 1 0.05 0.05 0.1

]
• Input scaling: Du =

[
nTmax cosφ sinαmax nTmax cosφ

]
• State penalty Q = D−1

x Q̂Dx with Q̂ ∈ {I5, 10I5}
• Input penalty R = D−1

x R̂Dx with R̂ = I2
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

Direct application of LP on slide 29 (Q̂ = I5, Q̂ = 10I5):
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One-Step Minimal RPI Computation

Trodden, “A One-Step Approach to Computing a Polytopic Robust Invariant Set”, 2016. [1]

The one-shot LP of slide 29 and the iterative algorithm of slide 27 are

identical...
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

We consider Discrete Linear Time Invariant (DLTI) system:

x+ = Ax + Bu + Dp,

where x ∈ Rn, p ∈ P = {p ∈ Rd : Rp ≤ r} and u ∈ U = {u ∈ Rm : Hu ≤ h}
are “specification” polytopes.

Controlled Robust Positively Invariant Set

A set X is called controlled robust positively invariant (CRPI) if:

X = {x ∈ Rn : ∃u ∈ U s.t. Ax + Bu + Dp ∈ X , ∀p ∈ P}.

Maximal CRPI Set

A set X∞ ⊆ X is called maximal CRPI (maxCRPI) if it is CRPI and

contains all other CRPI sets in X , i.e. XCRPI ⊆ X∞ ∀XCRPI ⊆ X RCPI [3].
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

maxCRPI Set Convexity

Given the system x+ = Ax + Bu + Dp where p ∈ P, u ∈ U , consider X the

set of “safe” states. If X ,P,U are convex then the associated maxCRPI set

X∞ is convex.

Recall the maxCRPI set definition:

X∞ = {x ∈ Rn : ∃u ∈ U s.t. Ax + Bu + Dp ∈ X∞, ∀p ∈ P}.

The definition is recursive (X∞ on both sides) ⇒ compute X∞ iteratively.

Core step: preimage set computation.
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Preimage Set

Pre(S) , {x | ∃u ∈ U , Ax + Bu + Dp ∈ S ∀p ∈ P}

Remark: S CRPI ⇔ S ⊆ Pre(S).
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

maxCRPI Iterative Computation

Execute the following dynamic programming-type algorithm:

I0 = X
Ik+1 = Pre(Ik) ∩ Ik k = 0, 1, 2, ...

STOP if Ik+1 = Ik . Then, Ik = I∞ is the maxCRPI set.

(Proxy for convergence: distance between the islands.) 38



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Preimage Set Computation

Pre(S) = ((S 	 (DP))⊕ (−BU))A

where2:

• Minkowski sum: A⊕ B = {a + b : a ∈ A, b ∈ B}, O(cn)

• Pontryagin difference: A	 B = {a : a + b ∈ A,∀b ∈ B}, O(nc)

• Direct mapping: MA = {Ma : a ∈ A}, O(cn)

• Inverse mapping: AM = {a : Ma ∈ A}, O(nc)

Minkowski sum is the most expensive operation (highest facet count, cannot

be pre-computed).

2n is the polytope facet count and c is a coefficient.
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Pre(S) = [(S	(D ◦ P))⊕(−B ◦ U)] ◦ A
For independent disturbances, Pontryagin difference (O(nc)) and especially

Minkowski sum (O(cn)) are expensive3.

3n is the polytope facet count and c is a coefficient.

40



Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

However, may wish to render invariant only part of the state. Examples:

• Some states do not make physical sense to render invariant (our case:

skycrane mass)

• Some states may correspond to the controller (e.g. integrator)

In this case we want to render invariant the output y = Cx .

Controlled Robust Positively Output Invariant Set

The set X is Controlled Robust Positively Output Invariant (CRPOI) if:

Y = {y : ∃u ∈ U s.t. Ax + Bu + Dp ∈ Y ∀x s.t. y = Cx ,∀p ∈ P}
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Controlled Robust Positively Output Invariant Set

The set Y is Controlled Robust Positively Output Invariant (CRPOI) if:

Y = {y : ∃u ∈ U s.t. C (Ax + Bu + Dp) ∈ Y ∀x s.t. y = Cx ,∀p ∈ P}

Using C † the pseudoinverse of C , we can write:

Y = {y : ∃u ∈ U s.t. C (A(C †y +N (C )) + Bu + Dp) ⊆ Y ∀p ∈ P},

where N (C ) is the nullspace of C , i.e. N (C ) = {x : Cx = 0}. The preimage

set can be computed similarly to before:

Pre(Y) = ((Y 	 (CDP ⊕ CAN (C )))⊕ (−CBU))CAC †
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

The following algorithm summarizes maxCRPOI set computation4.

Algorithm 2 Iterative computation of maxCRPOI set Y∞.

Set Y to the “safe outputs” specification

while True do

Pre(Y)← ((Y 	 (CDP ⊕ CAN (C )))⊕ (−CBU))CAC †

Y+ = Y ∩ Pre(Y)

if Y ⊆ Y+
εtol

and Y+ ⊆ Yεtol
then

return Y∞ ← Y+

Y ← Y+

4If S = {x : Px ≤ p}, we denote Sεtol = {x : Px ≤ p + εtol} the εtol-dilation of S. In

practical, dilation is a more robust stopping criterion than equality (Y+ = Y) which is

prone to numerical inaccuracy.
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Going back to the skycrane example, consider the specifications:

• ±10 cm position error (in both x and y)

• ±10 cm/s velocity error in x , ±1 cm/s velocity error in y

• ±50 N disturbance force (in both x and y)

• Input constraint set given by the rocket motor specs [2] (visualized below)
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Maximal RCI Computation

Kvasnica et al., “Reachability Analysis and Control Synthesis for Uncertain Linear Systems...”, 2015. [3]

Direct application of algorithm on slide 43:
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Maximal RCI Computation With Dependent Noise

Rakovic et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”, 2006. [4]

What happens if the disturbance is state and/or input dependent?

p ∈ Projp P(x , u) = {θ = (p, x , u) ∈ Rd+n+m : Rθ ≤ r}
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Maximal RCI Computation With Dependent Noise

Rakovic et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”, 2006. [4]

What happens if the disturbance is state and/or input dependent?

p ∈ Projp P(x , u) = {θ = (p, x , u) ∈ Rd+n+m : Rθ ≤ r}

In this case Pre(X ) can be computed in several steps:

Z , X × U
W , {(x , u, p) : (x , u) ∈ Z, p ∈ P(x , u)}
Φ , {(x , u, p) : Ax + Bu + Dp ∈ S}
Σ , {(x , u) ∈ Z | Ax + Bu + Dp ∈ S ∀p ∈ P(x , u)}

= Z \ Projx,u(W \ Φ)

⇒ Pre(S) = Projx(Σ)

When sets are polytopes, all operations are possible via computational

geometry.

47



Maximal RCI Computation With Dependent Noise

Rakovic et al., “Reachability Analysis of Discrete-Time Systems With Disturbances”, 2006. [4]

Σ = Z\Projx,u(W\Φ).

Regiondiff operation (\) [5]) generates a union of polytopes, which suffers

from severe “fracturing” of convex regions.

Furthermore, Projx,u is expensive when dim(W) is large!
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Conclusion

• Minimal RPI computation boils down to a one-shot LP [1]

• Maximal CRPI computation for generic polytopes has exponential complexity

in set-based methods due to the Minkowski sum

• Maximal CRPI computation for dependent noise is computationally difficult

due to non-convexity

• Further reading in [6, 7].
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Thank You For Your Attention!
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Polyhedral 
Lyapunov 
Functions 

 Consider the system 𝑥 𝑡 + 1 = 𝐴 𝑡 𝑥 𝑡 , where 𝐴 𝑡  comes 
from a compact set. The following three statements are 
equivalent: 

 The system is asymptotically stable 

 The system is exponentially stable 

 The system has a polyhedral Lyapunov function 𝑉 𝑥 = 𝐺𝑥 ∞ 

 Polyhedra are expressive enough to prove exponential stability of 
a linear system, though it may be difficult to find a suitable “𝐺”. 

 For the simple case 𝑥 𝑡 + 1 = 𝐴𝑥 𝑡 ,  a Lyapunov function can be 
found from the Jordan decomposition of 𝐴. 

 With a known quadratic Lyapunov function, a polytope can 
approximate the ellipsoidal level set arbitrarily well. 



Lattices of V-
Polytopes 

 For each polytope of the form 𝒫 = 𝑥 ∈ ℝ𝑛 | 𝐺𝑥 ≤ 𝟏 , there is a 
unique dual polytope 𝒫∗ = co 𝐺𝑇𝑒1, … , 𝐺𝑇𝑒𝑚  whose interior 
contains the origin. 

 Important properties: 
 For any polytope 𝒫 whose interior contains the origin, 𝒫∗∗ = 𝒫. 

 Order is reversed when taking the dual, i.e. 𝒫1 ⊆ 𝒫2 ⇒ 𝒫2
∗ ⊆ 𝒫1

∗. 

 Since the set of H-polytopes with template 𝐺 form a complete 
lattice, so do their dual polytopes, 
co 𝛼1𝐺𝑇𝑒1, … , 𝛼𝑚𝐺𝑇𝑒𝑚 0 ≤ 𝛼𝑖 ≤ 𝛼𝑚𝑎𝑥 . 

𝐺𝑇 =
1 0 −1 0
0 1 0 −1

 

𝒫2
∗ 

𝒫1
∗ 𝒫1

∗ ∧ 𝒫2
∗ 

𝒫1
∗ ∨ 𝒫2

∗ 
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