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Context

A small cyber-physical system: closed-loop control

Control

Physics

r(t) e(t) u(t)
−

y(t)

Physics is usually defined by non-linear differential equations

ẋ = f (x(t), u(t)) , y(t) = g(x(t))

Control may be a continuous-time PI algorithm

e(t) = r(t)− y(t) , u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ

What is designing/synthesizing a controller?
Find values for Kp and Ki such that a given specification is satisfied.
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Context

Many classes of differential equations

1. Ordinary Differential Equations (ODE), e.g.,

ẏ(t) = f(t, y(t))

2. Differential-Algrebraic equations (DAE), e.g., semi-explicit DAE of index 1

ẏ(t) = f(t, y(t), x(t))
0 = g(t, y(t), x(t))

3. Delay Differential Equations (DDE), e.g.,

ẏ(t) = f(t, y(t), y(t − τ))

4. Sampled Switched Systems, e.g.,

ẏ(t) = fσ(t)(y(t))

with a piecewise constant switching rule σ(t) updated every τ
5. and others: partial differential equations, hybrid systems, etc.

Note: DynIBEX can handle case 1, 2, 4
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Context

Specification of PID Controllers
PID controller: requirements based on closed-loop response

We observe the output of the plant

Overshoot: Less than 10%
Steady-state error: Less than 2%
Settling time: Less than 10s
Rise time: Less than 2s

0 2 4 6 8 100

1

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems
Numerical simulations but

do not take into account that models are only an approximation;
produce approximate results.

and not adapted to deal with uncertainties
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Context

A global approach for verification or synthesis

Input
a mathematical description of dynamical systems (ODE, DAE, etc.)
specifications to fulfill or properties to verify

Output
yes/no answer

Main algorithm
1. compute trajectories
2. check properties

But should take into account when computing trajectories
uncertainties on mathematical models
uncertainties on data
approximation in numerical methods

which have an impact on how to express properties/specification ⇒ set-based approach
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Context

Set-based simulation
Definition
numerical simulation methods implemented with interval analysis methods

Goals
takes into account various uncertainties (bounded) or approximations to produce rigorous
results

Example
A simple nonlinear dynamics of a car

v̇ = −50.0v − 0.4v 2

m with m ∈ [990, 1010] and v(0) ∈ [10, 11]

One Implementation DynIBEX: a combination of CSP solver (IBEX1) with validated
numerical integration methods based on Runge-Kutta

http://perso.ensta-paristech.fr/˜chapoutot/dynibex/
1Gilles Chabert (EMN) et al. http://www.ibex-lib.org
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Interval analysis

Basics of interval analysis

Interval arithmetic (defined also for: sin, cos, etc.):

[x , x ] + [y , y ] =[x + y , x + y ]
[x , x ] ∗ [y , y ] =[min{x ∗ y , x ∗ y , x ∗ y , x ∗ y},

max{x ∗ y , x ∗ y , x ∗ y , x ∗ y}]

Let an inclusion function [f ] : IR→ IR for f : R→ R is defined as:

{f (a) | ∃a ∈ [I]} ⊆ [f ]([I])

with a ∈ R and I ∈ IR.

Example of inclusion function: Natural inclusion
[x ] = [1, 2], [y ] = [−1, 3], and f (x , y) = xy + x

[f ]
(

[x ], [y ]
)

:= [x ] ∗ [y ] + [x ]

= [1, 2] ∗ [−1, 3] + [1, 2] = [−2, 6] + [1, 2] = [−1, 8]

9 / 53



Interval analysis

Numerical Constraint Satisfaction Problems
NCSP
A NCSP (V,D, C) is defined as follows:
V := {v1, . . . , vn} is a finite set of variables which can also be represented by the
vector v;
D := {[v1], . . . , [vn]} is a set of intervals such that [vi ] contains all possible values of
vi . It can be represented by a box [v] gathering all [vi ];
C := {c1, . . . , cm} is a set of constraints of the form ci (v) ≡ fi (v) = 0 or
ci (v) ≡ gi (v) 6 0, with fi : Rn → R, gi : Rn → R for 1 6 i 6 m.
Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C.
Example

V = {x}
Dx =

{
[1, 10]

}
C =

{
x exp(x) 6 3

} =⇒ x ∈ [1, 1.09861]

Remark: if [v] = ∅ then the problem is not satistafiable
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Interval analysis

Interval constraints and contractor
Interval constraint
Given a inclusion function [f ], a box [z], we look for a box [x], s.t.

[f ]([x]) ⊆ [z]

A simple resolution algorithm
put [x] in a list X
while X is not empty

take [x] in X
if [f]([x]) is included in [z] then keep [x] in S as a solution
else if width([x]) < tol then split [x], put [x1] and [x2] in X

Contractor
A contractor C[f ],[z] associated to constraint [f ]([x]) ⊆ [z] such that

Reduction:
C[f ],[z] ([x]) ⊆ [x]

Soundness:
[f ] ([x]) ∩ [z] = [f ]

(
C[f ],[z] ([x])

)
∩ [z]

Note: several contractor algorithms exist, e.g., FwdBwd, 3BCID, etc.
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Interval analysis

Contractor: example FwdBwd

Example

V = {x , y , z}
D =

{
[1, 2], [−1, 3], [0, 1]

}
C =

{
x + y = z

}
Forward evaluation

[z] = [z] ∩ ([x ] + [y ])
as [x ] + [y ] = [1, 2] + [−1, 3] = [0, 5] ⇒ [z] = [0, 1] ∩ [0, 5] No improvement yet

Backward evaluation
[y ] = [y ] ∩ ([z]− [x ]) = [−1, 3] ∩ [−2, 0] = [−1, 0] Refinement of [y ]
[x ] = [x ] ∩ ([z]− [y ]) = [1, 2] ∩ [0, 2] = [1, 2] No refinement of [x ]

Remark: this process can be iterated until a fixpoint is reached

Remark: the order of constraints is important for a fast convergence
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Interval analysis

IBEX in one slide

Easy definition of
functions

Numerical constraints

Pruning methods

Interval evaluation of
functions

#include "ibex.h"

using namespace std;
using namespace ibex;

int main() {

Variable x;
Function f (x, x*exp(x));

NumConstraint c1(x, f(x) <= 3.0);

CtcFwdBwd contractor(c1);

IntervalVector box(1);
box[0]=Interval(1,10);

cout << "f" << box << " = " << f.eval(box) << endl;
contractor.contract(box);
cout << "after contraction box = " << box << endl;

}

IBEX is also a parametric solver of constraints, an optimizer, etc.
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Interval analysis

Contractor: example Newton operator

Example

V = {x}
D =

{
[1, 2]

}
C =

{
x2 − 2 = 0

}
Newton operator (uni dimensional case)

N ([x ]) = [x ] ∩ (m − f (c)
f ′([x ]) )

m is the midpoint of [x ]
Property
if N ([x ]) ⊆ int([x ]) then there exists a unique fixed point (Brouwer fixed-point theorem)

Remark: this operator can be iterated until a fixpoint is reached
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Interval analysis

Example of Newton operator
#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){

Variable x;

Function f(x,sqr(x)-2);

Function df(f,Function::DIFF);

IntervalVector box(1);
box[0] = Interval(1,2);

cout << box << endl;
for (int i = 0; i < 3; i++) {

box[0] &= box[0].mid() - f.eval(box.mid()) / df.eval(box);
cout << box << endl;

}

return 0;
}

Output:

([1, 2])
([1.375, 1.4375])

([1.41406, 1.41442])
([1.41421, 1.41421])
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Interval analysis

Paving
Methods used to represent complex sets S with

inner boxes, i.e., set of boxes included in S
outer boxes, i.e., set of boxes that does not belong to S
the frontier, i.e., set of boxes we do not know

Example, a ring S =
{

(x , y) | x2 + y 2 ∈ [1, 2]
}

over [−2, 2]× [−2, 2]

Remark: involving bisection algorithm and so complexity is exponential in the size of the
state space (contractor programming to overcome this).
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Validated numerical integration

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0,T ]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class C k

Goal of numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .
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Validated numerical integration

Validated solution of IVP for ODE

Goal of validated numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi ] 3 y(ti ; y0) .

A two-step approach

Exact solution of ẏ = f (y(t)) with y(0) ∈ Y0

Safe approximation at discrete time instants
Safe approximation between time instants
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Validated numerical integration

A priori enclosure: computation of [ỹ]`
Based on Picard-Lindelöf operator (naive approach)

Ψ([e]) := [y]` + [0, h].f([e])

If one has [e]1 such that Ψ([e]1) ⊆ [e]1, then one has a unique solution on
[t`, t` + h] and this solution is enclosed in [e]1.
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Validated numerical integration

A priori enclosure: computation of [ỹ]`

Based on Picard-Lindelöf operator (naive approach)

Ψ([e]) := [y]` + [0, h].f([e])

If one has [e]1 such that Ψ([e]1) ⊆ [e]1, then one has a unique solution on
[t`, t` + h] and this solution is enclosed in [e]1.

Note on the Variation of the step-size
In function of

the Picard-Lindelöf
the size of the Local Truncation Error
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Validated numerical integration

Runge-Kutta validated methods

Numerical solutions of IVP for ODEs are produced by
Adams-Bashworth/Moulton methods
BDF methods
Runge-Kutta methods
etc.

each of these methods is adapted to a particular class of ODEs/DAEs

Runge-Kutta methods

have strong stability properties for various kinds of problems (A-stable, L-stable,
algebraic stability, etc.)
may preserve quadratic algebraic invariant (symplectic methods)
can produce continuous output (polynomial approximation of y(t; y0))

We try to benefit these properties in validated computations
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Validated numerical integration

Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun’s method)2 is defined by:

k1 = f (t`, y`) , k2 = f (t` + 1h, y` + h1k1)

yi+1 = y` + h
(1

2 k1 + 1
2 k2

) 0
1 1

1
2

1
2

Intuition
ẏ = t2 + y 2

y0 = 0.46
h = 1.0

dotted line is the exact solution.

28 II. Numerical Integrators

II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 +
h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)

k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2 k1)

y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.

1

1

1

1

1

1

t

y

y0

k1

1
2

k2

y1

expl. trap. rule

t

y

k1

y0 1
2

k2

y1

expl. midp. rule

t

y

y0

k1

a21
c2

a31 a32

c3

b1 b2 b3

1

k2

k3

y1

Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution

2example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
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Validated numerical integration

Validated Runge-Kutta methods

A validated algorithm
[y`+1] = [RK] (h, [y`]) + LTE .

Challenges

1. Computing with sets of values (intervals) taking into account dependency problem
and wrapping effect;

2. Bounding the approximation error of Runge-Kutta formula.

Our approach

Problem 1 is solved using affine arithmetic replacing centered form and QR
decomposition
Problem 2 is solved by bounding the Local Truncation Error (LTE) of
Runge-Kutta methods based on B-series
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Validated numerical integration

Order condition for Runge-Kutta methods

Method order of Runge-Kutta methods and Local Truncation Error (LTE)

y(t`; y`−1)− y` = C · hp+1 with C ∈ R.

we want to bound this!

Order condition
This condition states that a method of Runge-Kutta family is of order p iff

the Taylor expansion of the exact solution
and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.

Consequence
The LTE is the difference of Lagrange remainders of two Taylor expansions
. . . but how to compute it?
using tools coming from Butcher’s theory
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Validated numerical integration

Simulation of an open loop system
A simple dynamics of a car

ẏ = −50.0y − 0.4y 2

m with m ∈ [990, 1010]

Simulation for 100 seconds with y(0) = 10

The last step is y(100) = [0.0591842, 0.0656237]
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Validated numerical integration

Simulation of an open loop system

ODE definition

IVP definition

Parametric simulation
engine

int main(){

const int n = 1;
Variable y(n);

IntervalVector state(n);
state[0] = 10.0;

// Dynamique d’une voiture avec incertitude sur sa
masse

Function ydot(y, ( -50.0 * y[0] - 0.4 * y[0] * y[0])
/ Interval (990, 1010));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run simulation();

//For an export in order to plot
simu.export1d yn("export-open-loop.txt", 0);

return 0;
}
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Validated numerical integration

Simulation of a closed-loop system
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

Simulation for 10 seconds with y(0) = w(0) = 0

The last step is y(10) = [9.83413, 9.83715]
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Validated numerical integration

Simulation of a closed-loop system
#include "ibex.h"

using namespace ibex;

int main(){

const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run simulation();

simu.export1d yn("export-closed-loop.txt", 0);

return 0;
}
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Validated numerical integration

Simulation of an hybrid closed-loop system
A simple dynamics of a car with a discrete PI controller

ẏ = u(k)− 50.0y − 0.4y 2

m with m ∈ [990, 1010]

i(tk ) = i(tk−1) + h(c − y(tk )) with h = 0.005
u(tk ) = kp(c − y(tk )) + ki i(tk ) with kp = 1400, ki = 35

Simulation for 3 seconds with y(0) = 0 and c = 10
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Validated numerical integration

Simulation of an hybrid closed-loop system
#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){
const int n = 2; Variable y(n);
Affine2Vector state(n);
state[0] = 0.0; state[1] = 0.0;

double t = 0; const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) {
Affine2 goal(10.0);
Affine2 error = goal - state[0];

// Controleur PI discret
integral = integral + sampling * error;
Affine2 u = 1400.0 * error + 35.0 * integral;
state[1] = u;

// Dynamique d’une voiture avec incertitude sur sa masse
Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0])

/ Interval (990, 1010), Interval(0.0)));
ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
simu.run simulation();

// Mise a jour du temps et des etats
state = simu.get last(); t += sampling;

}

return 0;
}

Manual handling of
discrete-time evolution
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Validated numerical integration

Differential Algebraic Equations

Index-1 DAE are considered or semi-explicit DAE of the form

ẏ = f (t, x, y), (1)
0 = g(t, x, y) . (2)

Adaptation of validated Runge-Kutta methods for DAE.
Main ideas

A priori enclosure of y(t) and x(t)
I Interval Picard operator for y
I Interval contractor à la Newton for x

Computation of the solution at tn.
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Differential constraint satisfaction problems
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Differential constraint satisfaction problems

Dynamical systems

A general settings of dynamical systems

S ≡


ẏ(t) = f(t, y(t), x(t), p),

0 = g(t, y(t), x(t))
0 = h(y(t), x(t))

.

we denote by
Y(T ,Y0,P) = {y(t; y0, p) : t ∈ T , y0 ∈ Y0, p ∈ P} .

the set of solutions
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Differential constraint satisfaction problems

Example of ODEs with constraints
Production-Destruction systems based on an ODE with parameter a = 0.3

(ẏ0
ẏ1
ẏ2

)
=


−y0y1

1 + y0y0y1

1 + y0
− ay1

ay1


and associated to constraints:

y0 + y1 + y2 = 10.0
y0 > 0
y1 > 0
y2 > 0

Initial values, for t ∈ [0, 100], are (y0(0)
y1(0)
y2(0)

)
=

(9.98
0.01
0.01

)
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Differential constraint satisfaction problems

ODEs with constraints in DynIBEX

const int n= 3;
Variable y(n);

IntervalVector yinit(n);
yinit[0] = Interval(9.98);
yinit[1] = Interval(0.01);
yinit[2] = Interval(0.01);
Interval a(0.3);

Function ydot = Function(y,Return(-y[0]*y[1]/(1+y[0]),
y[0]*y[1]/(1+y[0]) - a*y[1],
a*y[1]));

NumConstraint csp1(y,y[0]+y[1]+y[2] -10.0 = 0);
NumConstraint csp2(y,y[0]>=0);
NumConstraint csp3(y,y[1]>=0);
NumConstraint csp4(y,y[2]>=0);

Array<NumConstraint> csp(csp1,csp2,csp3,csp4);

ivp ode problem = ivp ode(ydot,0.0,yinit,csp);
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Differential constraint satisfaction problems

ODEs with constraints in DynIBEX – results
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Differential constraint satisfaction problems

Contractors on trajectories
Add a measure and contract localy
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Differential constraint satisfaction problems

Contractors on trajectories
Forward
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Differential constraint satisfaction problems

Contractors on trajectories
Backward
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Differential constraint satisfaction problems

A simple example DynIBEX
ODEs considered

ẋ = x3 − 1.0

with x(0) = [−0.9, 0.9] and x(0) = [0, 0.9]

Simulation result

Black area is with x(0) = [−0.9, 0.9] (full integration: Picard+Integration)
Yellow area is with x(0) = [0, 0.9] (contraction+propagation)
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Differential constraint satisfaction problems

Example in DynIBEX
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = Interval(0.0);
state[1] = Interval(-0.9, 0.9);

Function ydot(y, Return (Interval(1.0), y[1]*(y[1]*y[1]-1.0)));

ivp ode vdp = ivp ode(ydot, 0.0, state);

simulation* simu = new simulation(&vdp, 11.0, LC3, 1e-12, 0.001);

simu -> run simulation();

simulation* simu1 = new simulation(*simu);

IntervalVector state1(n);
state1[0] = Interval(0.0);
state1[1] = Interval(0.0, 0.9);

simu1 -> propag (state1);
simu1 -> fixed point (1e-5);
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Differential constraint satisfaction problems

Constraint Satisfaction Differential Problems

CSDP
Let S be a differential system and tend ∈ R+ the time limit. A CSDP is a NCSP defined
by

a finite set of variables V including the parameters of the differential systems Si , i.e.,
(y0, p), a time variable t and some other algebraic variables q;
a domain D made of the domain of parameters p : Dp , of initial values y0 : Dy0 , of
the time horizon t : Dt , and the domains of algebraic variables Dq;
a set of constraints C which may be defined by set-based constraints over variables
of V and special variables Yi (Dt ,Dy0 ,Dp) representing the set of the solution of Si
in S.

with set-based constraints considered:

g(A) ⊆ B g(A) ⊇ B
g(A) ∩ B = ∅ g(A) ∩ B 6= ∅

Remark translation to intervals should be done with precautions
Note: we follow the same approach that Goldsztejn et al.3

3Including ODE Based Constraints in the Standard CP Framework, CP10
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Particular problems considered and temporal properties

We focus on particular problems of robotics involving quantifiers
Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A* ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A* [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)

*: shall be used in negative form
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Simulation of a closed-loop system with safety
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

and a safety propriety
∀t, y(t) ∈ [0, 11]

Failure

y([0, 0.0066443]) ∈ [−0.00143723, 0.0966555]
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Simulation of a closed-loop system with safety property
#include "ibex.h"

using namespace ibex;

int main(){
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0; state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

simulation simu = simulation(&vdp, 10.0, RK4, 1e-6);
simu.run simulation();

// verification de surete
IntervalVector safe(n);
safe[0] = Interval(0.0, 11.0);
bool flag = simu.stayed in (safe);
if (!flag) {

std::cerr << "error safety violation" << std::endl;
}

return 0;
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Case study – tuning PI controller [SYNCOP’15]

A cruise control system two formulations:
uncertain linear dynamics;

v̇ = u − bv
m

uncertain non-linear dynamics

v̇ = u − bv − 0.5ρCdAv 2

m
with

m the mass of the vehicle
u the control force defined by a PI controller
bv is the rolling resistance
Fdrag = 0.5ρCdAv 2 is the aerodynamic drag (ρ the air density, CdA the drag
coefficient depending of the vehicle area)
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Case study – settings and algorithm

Embedding the PI Controller into the differential equations:
u = Kp(vset − v) + Ki

∫
(vset − v)ds with vset the desired speed

Transforming interr =
∫

(vset − v)ds into differential form

interr

dt = vset − v

v̇ = Kp(vset − v) + Ki interr − bv
m

Main steps of the algorithm

Pick an interval values for Kp and Ki

Simulate the closed-loop systems with Kp and Ki
I if specification is not satisfied: bisect (up to minimal size) intervals and run

simulation with smaller intervals
I if specification is satisfied try other values of Kp and Ki
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Case study – paving results

Result of paving for both cases with
Kp ∈ [1, 4000] and Ki ∈ [1, 120]
vset = 10, tend = 15, α = 2% and ε = 0.2 and minimal size=1
constraints: y(tend ) ∈ [r − α%, r + α%] and ẏ(tend ) ∈ [−ε, ε]

Linear case (CPU ≈ 10 minutes) Non-linear case (CPU ≈ 80 minutes)
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Towards solving optimal controls

Optimal control of the form

ẏ(t) = fu2 (t, y(t), u1(t)) avec y(0) = y0 and t ∈ [0, tend]

J(u1(t)) = ψ (y(tend)) +
∫ tend

0
L(t, y(t), u1(t))

can be solved with many different approaches
direct method: full discretization and cast into an optimization problems
indirect method: apply PMP and solve a BVP with shooting methods
HJB approaches: solve a PDE

Remark: we are interested in the indirect approach
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Solving BVP ODE

A simple example4

ẅ = 1.5w2 with w(0) = 4 and w(1) = 1

so we have to found the initial condition ẇ(0) = s such as the boundary conditions are
fulfilled.

Note: There are 2 solutions s = −8 and s ≈ −35.9

A combination of validated numerical integration, contractors and bissection algorithms
can do the job.

4coming from Stoer, J. and Burlisch, R. Introduction to Numerical Analysis. New York: Springer-Verlag,
1980.
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BVP in DynIBEX – 1

const int n = 2;

const double horizon = 1.0;
const double tol = 1e-3;
std::stack<simulation*> stack sim;

Variable y(n);

IntervalVector initialState(n);
initialState[0] = Interval(-10.0,0.0);
initialState[1] = 4.0;

IntervalVector finalState(n);
finalState[0] = Interval::ALL REALS;
finalState[1] = 1.0;

Function ydot(y, Return( 1.5 * y[1] * y[1], y[0]));
ivp ode vdp = ivp ode(ydot, 0.0, initialState);

simulation simu = simulation(&vdp, horizon, RK4, 1e-6, 0.01);
simu.run simulation();
plot simu (&simu, "red[red]");
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BVP in DynIBEX – 2
stack sim.push (&simu);
while (stack sim.size() != 0) {

simulation* s = stack sim.top(); stack sim.pop();

IntervalVector temp = s->get last();
if (temp.is subset(finalState) && temp.max diam() <= tol) {

plot simu (s, "blue[blue]");
}
else if ((temp & finalState).is empty()) {

std::cerr << "do nothing : FORGET s with init = " << s->get(0) << std::endl;
free(s);

}
else {

IntervalVector init = s->get(0);
LargestFirst bbb(tol, 0.5);
if (init.max diam() >= tol) {

std::pair<IntervalVector,IntervalVector> p = bbb.bisect(init);
simulation* s1 = new simulation(*s); s1 -> propag (p.first);

simulation* s2 = new simulation(*s); s2 -> propag (p.second);

stack sim.push(s1); stack sim.push(s2);
}
else {

std::cerr << "UNKNOWN case : with initial condition " << init << std::endl;
}

}

}
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BVP results
A huge over-approximation of the trajectory is computed (red) and then bissection and
contractors are used to enclose the solution

One over-approximated solution is s = [−8.00049,−7.99988]
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What is missing to solve optimal control problems in DynIBEX ?

Example: minimal time problem5

ẋ = Ax + Bu(t) with A =
(

0 1
−1 0

)
and B =

(
0
1

)
u(t) is scalar, |u| 6 1, and we try to reach 0 from x0 as fast as possible.
In this case, u(t) = sign(p(t)B(t))

where p(t)B(t) is the commutation function
p(t) is solution of ṗ(t) = −p(t)A(t)

Problem: control function are not continuous and it is an issue for validated numerical
integration methods

Consequence we need to deal with hybrid systems (here 2 modes: u = 1 and u = −1)

5coming from E. Trela lecture notes on Optimal Control
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Conclusion

DynIBEX is one ingredient of verification tools for cyber-physical systems.
It can handle uncertainties, can reason on sets of trajectories.

Also applied on

Controller synthesis of sampled switched systems [SNR’16]
Parameter tuning in the design of mobile robots [MORSE’16]
RRT-based trajectory generation [CDC17]

Future work (a piece of)

Pursue and improve cooperation with IBEX language
Improve algorithm of validated numerical integration (e.g., sensitivity)
Simulation of hybrid systems
SMT modulo ODE
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