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Example

SMT solvers have a hard time with non-linear numerical problems.

Demo

typedef struct { double x0, x1, x2; } state ;

/*@ predicate inv( state *s) =
@ 6.04 * s->x0 * s->x0 - 9.65 * s->x0 * s->x1
@ - 2.26 * s->x0 * s->x2 + 11.36 * s->x1 * s->x1
@ + 2.67 * s->x1 * s->x2 + 3.76 * s->x2 * s->x2 <= 1; */

/*@ requires \valid (s) && inv(s) && -1 <= in0 <= 1;
@ ensures inv(s); */

void step( state *s, double in0) {
double pre_x0 = s->x0, pre_x1 = s->x1, pre_x2 = s->x2 ;

s->x0 = 0.9379* pre_x0 - 0.0381* pre_x1 - 0.0414* pre_x2 + 0.0237* in0;
s->x1 = -0 .0404* pre_x0 + 0.968* pre_x1 - 0.0179* pre_x2 + 0.0143* in0;
s->x2 = 0.0142* pre_x0 - 0.0197* pre_x1 + 0.9823* pre_x2 + 0.0077* in0;

}
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Using Numerical Solvers

I First order theory of real numbers is decidable (Tarski).
I But complexity remains high.
⇒ We offer to use numerical optimization solvers:

semidefinite programming (SDP) solvers.
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SDP solvers yield approximate solutions
I Linear programming

simplex: exact solution interior-point: approximate solution

I Semidefinite programming

no simplex equivalent interior-point: approximate solution

⇒ incompleteness, soundness requires care

4 / 31



SDP solvers yield approximate solutions
I Linear programming

simplex: exact solution interior-point: approximate solution

I Semidefinite programming

no simplex equivalent interior-point: approximate solution

⇒ incompleteness, soundness requires care

4 / 31



SDP solvers yield approximate solutions
I Linear programming

simplex: exact solution interior-point: approximate solution

I Semidefinite programming

no simplex equivalent interior-point: approximate solution

⇒ incompleteness, soundness requires care
4 / 31



Preliminaries

Ensuring Soundness

Integration into a SMT Solver

Experimental Results

5 / 31



Preliminaries

Ensuring Soundness

Integration into a SMT Solver

Experimental Results

6 / 31



Positivstellensatz

We want to prove that

p1(x1, . . . , xn) > 0 ∧ . . . ∧ pm(x1, . . . , xn) > 0

is not satisfiable.

Sufficient condition: there exist ri ∈ R[x ] s.t.

−
∑

i
ri pi > 0 and ∀i , ri > 0

I equivalence under hypotheses (Putinar’s Positivstellensatz)
I no practical bound on degrees of ri ⇒ will be arbitrarily fixed
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Sum of Squares (SOS) Polynomials

Definition (SOS Polynomial)
A polynomial p is SOS if there are polynomials q1, . . . , qm s.t.

p =
∑

i
q2

i .

I If p SOS then p > 0

I p SOS iff there exist z :=
[
1, x1, x2, x1x2, . . . , xd

n

]
and Q � 0

p = zT Q z .

⇒ SOS can be encoded as semidefinite programming (SDP).
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SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

For instance

Q =

 2 −3 1
−3 5 0
1 0 5

 = RT R R = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

9 / 31



SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

For instance

Q =

 2 −3 1
−3 5 0
1 0 5

 = RT R R = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

9 / 31



SOS: Example
Example
Is p(x , y) := 2x4 + 2x3y − x2y2 + 5y4 SOS ?

p(x , y) =

x2

y2

xy


T q11 q12 q13

q12 q22 q23
q13 q23 q33


x2

y2

xy


that is
p(x , y) = q11x4 + 2q13x3y + 2q23xy3 + (2q12 + q33)x2y2 + q22y4

hence q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5.

For instance

Q =

 2 −3 1
−3 5 0
1 0 5

 = RT R R = 1√
2

[
2 −3 1
0 1 3

]

hence p(x , y) = 1
2
(
2x2 − 3y2 + xy

)2
+ 1

2
(
y2 + 3xy

)2
.

9 / 31



SOS: Example, Dual Formulation
Example
The constraints q11 q12 q13

q12 q22 q23
q13 q23 q33

 � 0

and q11 = 2, 2q13 = 2, 2q23 = 0, 2q12 + q33 = −1, q22 = 5
can also be expressed as 2 −λ 1
−λ 5 0
1 0 2λ− 1

 � 0

or λ

 0 −1 0
−1 0 0
0 0 2

+

2 0 1
0 5 0
1 0 −1

 � 0

which is the dual form of (another) SDP.

I first solution sometime yields smaller problems
I second solution can sometimes be more robust
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Cholesky Decomposition

I To prove that q ∈ R is non negative,
we can exhibit r such that q = r2 (typically r = √q).

I To prove that a matrix Q ∈ Rs×s is positive semidefinite
we can similarly expose R such that Q = RT R
(since xT

(
RT R

)
x = (Rx)T (Rx) = ‖Rx‖22 > 0).

I The Cholesky decomposition computes such a matrix R
in Θ(s3) arithmetic operations.
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SOS: Using approximate SDP solvers

Results from SDP solvers will only satisfy equality constraints
up to some ε

p = zT Q z + zT E z , |Ei ,j | 6 ε.

Two validation methods in the litterature
I Check that for any |Ei ,j | 6 ε, Q + E � 0
I Round Q to an exact solution Q̃ s.t. p = zT Q̃ z

and check Q̃ � 0
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Proving Existence of a Nearby Solution

Results from SDP solvers will only satisfy equality constraints
up to some ε

p = zT Q z + zT E z , |Ei ,j | 6 ε.

If Q − s ε I � 0 then Q + E � 0 and p = zT (Q + E ) z is SOS.

I Hence the validation method: given Q ∈ Rs×s , p ' zT Q z
1. Bound difference ε between coefficients of p and zT Q z .
2. If Q − s ε I � 0, then p is proved SOS.

I 1 can be done with interval arithmetic (in Θ(s2) flops)
(although rational arithmetic is more precise and fast enough)
and 2 with a Cholesky decomposition (Θ(s3) flops).

⇒ Efficient validation method using just floats.
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Intuitively
{X | X � 0}

{Q + E }Q

p SOS

{Q + E }Q

cannot conclude

equality constraints

equality constraints
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Padding

{Q + E }Q

{X | X � 0} {X | X − sεI � 0}

equality constraints
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Incompleteness: Empty Interior SDP Problems
If the interior of the feasibility set of the problem is empty
(i.e., no feasible Q s.t. every Q′ in a small neighborhood is feasible)
previous method almost never works.

{X | X � 0}

{Q + E }Q

cannot conclude

equality constraints
17 / 31



Rounding to an Exact Solution

I Round Q to an exact solution Q̃ s.t. p = zT Q̃ z
round every coefficients of Q up to 1, 12 ,

1
3 , . . .

I and check each time whether Q̃ � 0

− Requires the dual representation (primal just doesn’t work).
+ Can prove some empty interior problems, but still incomplete
− and requires exact checking of Q � 0 (not just Q � 0)

prevents using floating-point Cholesky
but exact rational LDLT can be expensive.

+ Can handle strict/non strict inequalities and (dis)equalities
− but requires expensive alternative relaxation scheme.
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Intuitively, Rounding to an Exact Solution
{X | X � 0}

Q̃

Q̃

Q

equality constraints
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Handling Equalities and Strict inequaities
Example
To prove

x1 ≥ 0 ∧ x2 ≥ 0 ∧ q1 = 0 ∧ q2 = 0 ∧ p > 0

unsatisfiable, with q1 := x2
1 + x2

2 − x2
3 − x2

4 − 2, q2 := x1x3 + x2x4
and p := x3x4 − x1x2
one can exhibit l1 := −1

2 (x1x2 − x3x4), l2 := −1
2 (x2x3 + x1x4),

s2 := 1
2
(
x2
3 + x2

4

)
and s7 := 1

2
(
x2
1 + x2

2 + x2
3 + x2

4

)
s.t.

l1q1 + l2q2 + s2p + s7x1x2 + p = 0, s2 ≥ 0, s7 ≥ 0.

Remark
Replacing p > 0 by p ≥ 0, (x1, x2, x3, x4) = (0,

√
2, 0, 0) is solution.
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Soundness Verification for SOS: Conclusion

exact solution nearby solution
empty interior problems some no
>,=, 6= some only ≥
relaxation scheme exponential linear
proof of Q � 0 expensive fast

(rational LDLT) (fp Cholesky)
possible representation dual any
completenes no no
use off the shelf SDP yes yes
formal proof easy non trivial

(HOL Light, Coq) (Coq)

⇒ first try (cheap) nearby solution method
then if it fails and problem is small, look for exact solution
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Integration into a SMT Solver

Incrementality
I common practice with simplex algorithm
I some SDP do offer to provide an initial solution
I but due to the nature of interior point algorithms

doesn’t give significant speed ups
(can even slow down)

Small Conflict Sets
I exact method: relaxation coeffs rounded to zero

indicate useless constraint
I nearby solution: heuristic solving log(n) SDPs

for n constraints
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The OSDP Library

OCaml library OSDP:
I simple interface to SOS programming
I interfaces SDP solvers

I Csdp
I Mosek
I SDPA

I under LGPL license
I available at https://cavale.enseeiht.fr/osdp/
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Integration in Alt-Ergo

I Alt-Ergo maintains a map: polynomial pi → interval [ai , bi ].
I The constraints

−
∑

i
ri (pi − ai )(bi − pi ) > 0 and ∀i , ri > 0

are provided to OSDP.
I If OSDP returns a valid solution,

∧
i

pi ∈ [ai , bi ] is unsat

and set of conflicting constraints can be minimized
I otherwise: unknown
I Integrated into Alt-Ergo 1.30 under CeCILL-C license
I available at https://cavale.enseeiht.fr/osdp/aesdp/
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Experimental Results (1/3)
Benchmarks QF_NIA from SMT-LIB.

AE AESDP AESDPap AESDPex
unsat time unsat time unsat time unsat time

AProVE (746) 103 7387 319 23968 359 7664 318 22701
calypto (97) 92 357 88 679 88 489 89 816
LassoRanker (102) 57 9 62 959 64 274 63 878
LCTES (2) 0 0 0 0 0 0 0 0
leipzig (5) 0 0 0 0 0 0 0 0
mcm (161) 0 0 0 0 0 0 0 0
UltimateAutom (7) 1 0.35 7 0.73 7 0.62 7 0.69
UltimateLasso (26) 26 118 26 212 26 126 26 215
total (1146) 279 7872 502 25818 544 8553 503 24611

CVC4 Smtrat Yices2 Z3
unsat time unsat time unsat time unsat time

AProVE (746) 586 10821 185 3879 709 1982 252 5156
calypto (97) 87 7 89 754 97 409 95 613
LassoRanker (102) 72 27 20 12 84 595 84 2538
LCTES (2) 1 0 0 0 0 0 0 0
leipzig (5) 0 0 0 0 1 0 0 0
mcm (161) 4 2489 0 0 0 0 4 2527
UltimateAutom (7) 6 0.03 1 7.22 7 0.04 7 0.31
UltimateLasso (26) 4 66 26 177 26 6 26 21
total (1146) 780 13411 321 4829 924 2993 468 10855

On Intel Xeon 2.3 GHz, time limits 900 s and memory limits 2 GB.
All times are in seconds.
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Experimental Results (2/3)
Benchmarks QF_NRA from SMT-LIB.

AE AESDP AESDPap AESDPex
unsat time unsat time unsat time unsat time

Sturm-MBO (300) 155 12950 155 13075 155 13053 155 12973
hong (20) 1 0 20 28 20 24 20 27
hycomp (2494) 1285 15351 1266 15857 1271 16080 1265 14909
keymaera (320) 261 36 291 356 278 97 291 360
LassoRanker (627) 0 0 0 0 0 0 0 0
meti-tarski (2615) 1882 10 2273 91 2267 65 2241 73
UltimateAutom (13) 0 0 0 0 0 0 0 0
zankl (85) 14 1.00 24 15.46 24 16.09 24 15.67
total (6549) 3571 28348 4029 29423 4015 29334 3996 28357

CVC4 Smtrat Yices2 Z3
unsat time unsat time unsat time unsat time

Sturm-MBO (300) 285 1403 285 620 2 0 47 21
hong (20) 20 1 20 0 8 240 9 6
hycomp (2494) 2184 208 1588 13784 2182 1241 2201 4498
keymaera (320) 249 4 307 13 270 359 318 2
LassoRanker (627) 441 32786 0 0 236 30835 119 1733
meti-tarski (2615) 1643 804 2520 3345 2578 2027 2611 337
UltimateAutom (13) 5 0.52 0 0 12 57.19 13 19.23
zankl (85) 24 9.40 19 13.47 32 7.22 27 0.43
total (6549) 4853 35239 4740 17775 5331 36849 5355 6658
On Intel Xeon 2.3 GHz, time limits 900 s and memory limits 2 GB.
All times are in seconds.
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Experimental Results (3/3)

More numerical benchmarks (incl. control-command programs).
AE AESDP AESDPap AESDPex

unsat time unsat time unsat time unsat time
C (67) 11 0.05 63 39.78 63 40.01 13 1.18
quadratic (67) 13 0.06 67 14.68 67 15.44 15 0.08
flyspeck (20) 1 0.00 19 26.35 19 26.62 3 0.01
global-opt (14) 2 0.01 14 8.72 14 8.83 5 0.20
total (168) 27 0.12 163 89.53 163 90.90 36 1.47

CVC4 Smtrat Yices2 Z3
unsat time unsat time unsat time unsat time

C (67) 0 0 0 0 0 0 0 0
quadratic (67) 14 2.46 18 1.26 0 0 25 257.39
flyspeck (20) 6 695.59 9 36.54 10 0.05 9 0.05
global-opt (14) 5 0.12 12 41.18 12 0.16 13 683.45
total (168) 25 698.17 39 78.98 22 0.21 47 940.89

On Intel Xeon 2.3 GHz, time limits 900 s and memory limits 2 GB.
All times are in seconds.
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Conclusion

I Does not outperform state-of-the-art symbolic methods.
I But enables to solve problems out of reach for such methods.
I In particular, numerical problems arising in verification

of functional properties of control-command programs.

Future work
I Combination with symbolic (or other numerical) methods.
I Address properties about floating-point programs.
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Questions

Thanks for your attention!

?
31 / 31


	Preliminaries
	Ensuring Soundness
	Integration into a SMT Solver
	Experimental Results

