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Example
SMT solvers have a hard time with non-linear numerical problems.
Demo

typedef struct { double x0, x1, x2; } state;

/*@ predicate inv(state *s) =
Q 6.04 * s->x0 * s->x0 - 9.65 * s->x0 * s->x1
Q - 2.26 * s->x0 * s->x2 + 11.36 * s->x1 * s->x1
Q + 2.67 * s->x1 * s5->x2 + 3.76 * s->x2 * §->x2 <= 1; *x/

/*@ requires \valid(s) && inv(s) && -1 <= in0 <= 1;
@ ensures inv(s); */
void step(state *s, double in0) {

double pre_x0 = s->x0, pre_x1 = s->x1, pre_x2 = s->x2;

s->x0 = 0.9379*pre_x0 - 0.0381*pre_x1 - 0.0414*pre_x2 + 0.0237*in0;
s->x1 = -0.0404*pre_x0 + 0.968*pre_x1 - 0.0179*pre_x2 + 0.0143%in0;
s->x2 = 0.0142*xpre_x0 - 0.0197*pre_x1 + 0.9823%pre_x2 + 0.0077*in0;



Using Numerical Solvers

» First order theory of real numbers is decidable (Tarski).
» But complexity remains high.

= We offer to use numerical optimization solvers:
semidefinite programming (SDP) solvers.
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SDP solvers yield approximate solutions
» Linear programming

simplex: exact solution interior-point: approximate solution
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SDP solvers yield approximate solutions
» Linear programming

simplex: exact solution interior-point: approximate solution

» Semidefinite programming

simplex equivale interior-point: approximate solution

= incompleteness, soundness requires care
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Positivstellensatz

We want to prove that

P1(X1y ..oy Xn) Z0A oA Pm(xa, ..

is not satisfiable.

., xn) =0
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Positivstellensatz

We want to prove that
p1(X1y .- yXn) Z0A .. APm(X1,. .., %0) =0

is not satisfiable.

Sufficient condition: there exist r; € R[x] s.t.

—Zr;p,->0 and Vi,r; >0
i

» equivalence under hypotheses (Putinar's Positivstellensatz)

» no practical bound on degrees of r; = will be arbitrarily fixed
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Sum of Squares (SOS) Polynomials

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials qy, . ..

p=>_q.
i

» If p SOS then p >0

,Qm S-t.
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Sum of Squares (SOS) Polynomials

Definition (SOS Polynomial)

A polynomial p is SOS if there are polynomials qi, ..., gm s.t.

p=>_a.
i

» If p SOS then p >0
» p SOS iff there exist z := [l,xl,xz,xlxz, . ,x,‘,j] and Q@ = 0

p=z"Qz.

= SOS can be encoded as semidefinite programming (SDP).



SOS: Example

Example
Is p(x,y) = 2x* + 2x3y — x?y? + 5y* SOS ?

21T 2
X q11 qi12 q13| |X

p(x,y) = |y G2 G2 G| |y

Xy qi3 g23 Qqs33| (XY
that is

p(x,y) = quux* 4 2q13x3y + 2g23xy® + (2912 + 933)x%y° + qoy*
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X q11 qi12 q13| |X
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SOS: Example

Example
Is p(x,y) = 2x* + 2x3y — x?y? + 5y* SOS ?
T
x? di1 qi2 Qi3 X2
p(,y) = |y?| |a2 a2 au| |y

Xy qi3 g23 Qqs33| (XY
that is

p(x,y) = quix* +2q13x3y + 2go3xy® + (2912 + G33)x°y? + qaoy?
hence gi11 = 2, 213 = 2, 2g23 = 0, 2q12 + g33 = —1, g = 5.

For instance

Q=|-3

hence p(x,y) = (2)(2 —3y% + xy)2 + % (y2 + 3xy)2.

N =



SOS: Example, Dual Formulation

Example

The constraints
gi1 di12 qi3
g2 92 q3| =0

qi13 g23 Q33

and g11 =2, 2q13 = 2, 2923 = 0, 2q12 + g33 = —1, g2 =5
can also be expressed as

2 = 1

- 5 0 =0
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SOS: Example, Dual Formulation
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SOS: Example, Dual Formulation

Example

Th traint
e constraints G dn s
g2 92 q3| =0

q13 g23 Q33

and q11 =2, 2q13 =2, 2923 =0, 2g12 + g33 = —1, g2 =5
can also be expressed as

2 = 1 0 -1 0 2 0 1
-\ 5 0 =0orA|-1 0 O0|+1]|0 5 0]>=0
1 0 2x-1 0 0 2 1 0 -1

which is the dual form of (another) SDP.

» first solution sometime yields smaller problems

» second solution can sometimes be more robust
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Cholesky Decomposition

» To prove that g € R is non negative,
we can exhibit r such that g = r? (typically r = V9).
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Cholesky Decomposition

» To prove that g € R is non negative,
we can exhibit r such that g = r? (typically r = V9).

» To prove that a matrix @ € R°*® is positive semidefinite
we can similarly expose R such that @ = R™R
(since x™ (RTR) x = (Rx)T (Rx) = | Rx[[3 > 0).

» The Cholesky decomposition computes such a matrix R
in ©(s*) arithmetic operations.
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Ensuring Soundness

12/31



SOS: Using approximate SDP solvers

Results from SDP solvers will only satisfy equality constraints
up to some ¢

p=z"Qz+z Ez, |Eij| <e.
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SOS: Using approximate SDP solvers

Results from SDP solvers will only satisfy equality constraints
up to some ¢

p=z"Qz+z Ez, |Eij| <e.

Two validation methods in the litterature
» Check that for any |Ejj| <e Q+E >0

» Round Q to an exact solution Qst. p=2z'Qz
and check @ = 0
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Proving Existence of a Nearby Solution

Results from SDP solvers will only satisfy equality constraints
up to some ¢

T T
p=z Qz+z Ez, |Eij

< e
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Proving Existence of a Nearby Solution

Results from SDP solvers will only satisfy equality constraints
up to some ¢

p=z"Qz+2z Ez, |Eij| < e

If @—sel >0 then Q—i—Ethndp:zT(Q—FE)zis SOS.

» Hence the validation method: given Q € RS** p~ z7Qz

1. Bound difference ¢ between coefficients of p and z2TQz.
2. f Q —sel =0, then p is proved SOS.
» 1 can be done with interval arithmetic (in ©(s) flops)
(although rational arithmetic is more precise and fast enough)
and 2 with a Cholesky decomposition (9(s*) flops).

= Efficient validation method using just floats.
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Intuitively

{X[X =0}

equality constraints
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Intuitively

{X|X =0}
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Intuitively

{X| X =0}
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Padding

{X | X — sel = 0}

equality constraints
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Incompleteness: Empty Interior SDP Problems
If the interior of the feasibility set of the problem is empty
(i.e., no feasible @ s.t. every Q@' in a small neighborhood is feasible)
previous method almost never works.

{X[|Xx =0}

equality constraints
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Rounding to an Exact Solution

» Round @ to an exact solution Z() s.t. p= zT(~?z

—

7§a

N =

round every coefficients of Q up to 1,

» and check each time whether é =0

— Requires the dual representation (primal just doesn't work).
+ Can prove some empty interior problems, but still incomplete

— and requires exact checking of Q > 0 (not just Q > 0)
prevents using floating-point Cholesky
but exact rational LDLT can be expensive.

+ Can handle strict/non strict inequalities and (dis)equalities

— but requires expensive alternative relaxation scheme.

18/31



Intuitively, Rounding to an Exact Solution

{X[X =0}

equality constraints
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Intuitively, Rounding to an Exact Solution

(X | X =0}

Q
S
/

equality constraints
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Handling Equalities and Strict inequaities

Example
To prove
x12>20Ax>0Ag1=0Agp=0Ap>0
_ . N B B B o
unsatisfiable, with g1 :=x{ + x5 — X3 — X3 — 2, g2 := x1X3 + X20X4
and p := x3x4 — x1X0

1
one can exhibit /j := s (x1x2 — x3xa), b := ) (x2x3 + x1xa),

Sy = % (xg +xf) and s7 = % <x12 + x2 +x32 —i—xf) s.t.

hgr + bhgy +sp+srxixo+p=0, s5>0, s7>0.

Remark
Replacing p > 0 by p > 0, (x1, X2, x3, xa) = (0, V2,0, 0) is solution.
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Soundness Verification for SOS: Conclusion

exact solution

nearby solution

empty interior problems some no

>, =, # some only >

relaxation scheme exponential linear

proof of @ > 0 expensive fast

(rational LDLT) | (fp Cholesky)

possible representation dual any

completenes no no

use off the shelf SDP yes yes

formal proof easy non trivial
(HOL Light, Coq) (Coq)

= first try (cheap) nearby solution method
then if it fails and problem is small, look for exact solution
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Integration into a SMT Solver
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Integration into a SMT Solver

Incrementality

» common practice with simplex algorithm
» some SDP do offer to provide an initial solution
» but due to the nature of interior point algorithms
doesn't give significant speed ups
(can even slow down)

Small Conflict Sets
» exact method: relaxation coeffs rounded to zero
indicate useless constraint

» nearby solution: heuristic solving log(n) SDPs
for n constraints
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Experimental Results
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The OSDP Library

OCaml library OSDP:

» simple interface to SOS programming
» interfaces SDP solvers

» Csdp
» Mosek
» SDPA

» under LGPL license

> available at https://cavale.enseeiht.fr/osdp/
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https://cavale.enseeiht.fr/osdp/

Integration in Alt-Ergo

» Alt-Ergo maintains a map: polynomial p; — interval [a;, bj].

» The constraints

—Zr, pi — ai)(bi— p;) >0 and Vi, >0

are provided to OSDP.
» If OSDP returns a valid solution, /\p,- € [ai, bi] is unsat

and set of conflicting constraints c;an be minimized
> otherwise: unknown
> Integrated into Alt-Ergo 1.30 under CeCILL-C license
> available at https://cavale.enseeiht.fr/osdp/aesdp/
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https://cavale.enseeiht.fr/osdp/aesdp/

Experimental Results (1/3)
Benchmarks QF__NIA from SMT-LIB.

AE AESDP AESDPap AESDPex

unsat  time | unsat time | unsat  time | unsat time
AProVE (746) 103 7387 319 23968 359 7664 318 22701
calypto (97) 92 357 88 679 88 489 89 816
LassoRanker (102) 57 9 62 959 64 274 63 878
LCTES (2) 0 0 0 0 0 0 0 0
leipzig (5) 0 0 0 0 0 0 0 0
mcm (161) 0 0 0 0 0 0 0 0
UltimateAutom (7) 1 0.35 7 0.73 7 0.62 7 0.69
UltimateLasso (26) 26 118 26 212 26 126 26 215
total (1146) 279 7872 502 25818 544 8553 503 24611

CVC4 Smtrat Yices2 Z3

unsat time | unsat time | unsat time | unsat time
AProVE (746) 586 10821 185 3879 709 1982 252 5156
calypto (97) 87 7 89 754 97 409 95 613
LassoRanker (102) 72 27 20 12 84 595 84 2538
LCTES (2) 1 0 0 0 0 0 0 0
leipzig (5) 0 0 0 0 1 0 0 0
mcm (161) 4 2489 0 0 0 0 4 2527
UltimateAutom (7) 6 0.03 1 722 7 0.04 7 0.31
UltimateLasso (26) 4 66 26 177 26 6 26 21
total (1146) 780 13411 321 4829 924 2993 468 10855

On Intel Xeon 2.3 GHz, time limits 900 s and memory limits 2 GB. 27,31



Experimental Results (2/3)
Benchmarks QF_NRA from SMT-LIB.

AE AESDP AESDPap AESDPex

unsat time | unsat time | unsat time | unsat time
Sturm-MBO (300) 155 12950 155 13075 155 13053 155 12973
hong (20) 1 0 20 28 20 24 20 27
hycomp (2494) 1285 15351 1266 15857 1271 16080 1265 14909
keymaera (320) 261 36 291 356 278 97 291 360
LassoRanker (627) 0 0 0 0 0 0 0 0
meti-tarski (2615) 1882 10 2273 91 2267 65 2241 73
UltimateAutom (13) 0 0 0 0 0 0 0 0
zankl (85) 14 1.00 24 15.46 24 16.09 24 15.67
total (6549) 3571 28348 4029 29423 4015 29334 3996 28357

CVC4 Smtrat Yices2 Z3

unsat time | unsat time | unsat time | unsat time
Sturm-MBO (300) 285 1403 285 620 2 0 47 21
hong (20) 20 1 20 0 8 240 9 6
hycomp (2494) 2184 208 1588 13784 2182 1241 2201 4498
keymaera (320) 249 4 307 13 270 359 318 2
LassoRanker (627) 441 32786 0 0 236 30835 119 1733
meti-tarski (2615) 1643 804 2520 3345 2578 2027 | 2611 337
UltimateAutom (13) 5 0.52 0 0 12 57.19 13 19.23
zankl (85) 24 9.40 19 13.47 32 7.22 27 0.43
total (6549) 4853 35239 4740 17775 5331 36849 | 5355 6658

On Intel Xeon 2.3 GHz, time limits 900 s and memory limits 2 GB. 25,31




Experimental Results (3/3)

More numerical benchmarks (incl. control-command programs).

AE AESDP AESDPap AESDPex
unsat  time | unsat time | unsat time | unsat time
C (67) 11 0.05 63 39.78 63 40.01 13 1.18
quadratic (67) 13 0.06 67 14.68 67 15.44 15 0.08
flyspeck (20) 1 0.00 19 26.35 19 26.62 3 0.01
global-opt (14) 2 0.01 14 8.72 14 8.83 5 0.20
total (168) 27 0.12 163 89.53 163  90.90 36 1.47
CVC4 Smtrat Yices2 Z3
unsat time | unsat time | unsat time | unsat time
C (67) 0 0 0 0 0 0 0 0
quadratic (67) 14 2.46 18 1.26 0 0 25 257.39
flyspeck (20) 6  695.59 9 36.54 10 0.05 9 0.05
global-opt (14) 5 0.12 12 41.18 12 0.16 13 683.45
total (168) 25 698.17 39 78.98 22 021 47  940.89

On Intel Xeon 2.3 GHz, time limits 900 s and memory limits 2 GB.

All times are in seconds.
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Conclusion

» Does not outperform state-of-the-art symbolic methods.
» But enables to solve problems out of reach for such methods.

> In particular, numerical problems arising in verification
of functional properties of control-command programs.
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Conclusion

» Does not outperform state-of-the-art symbolic methods.

» But enables to solve problems out of reach for such methods.

> In particular, numerical problems arising in verification
of functional properties of control-command programs.

Future work
» Combination with symbolic (or other numerical) methods.

» Address properties about floating-point programs.
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Questions

Thanks for your attention!
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