
My Taylor is rich
FEANICSES workshop

Xavier Thirioux
IRIT/INPT

may 2018

1 / 32

Outline

Context

Taylor Expansions Building Blocks
Values and Errors
Symmetric Tensors
Taylor Expansions

Conclusion

2 / 32

Taylor Approximations

Context: static analysis of plant-controller systems

§ Provide approximations of non-polynomial functions

Goal: flexible framework for an algebra of Taylor expansions

§ Multivariate case (any dimension)
§ Certified errors
§ Independent value and error domain
§ On-demand refinable approximations (any order)
§ Support integral/differential operators (physical-level
invariants)

§ Solve differential equations (fixed points)

3 / 32

Some Relevant Works

§ J. Karczmarczuk: “Functional Differentiation of computer
Programs”. 1D Taylor expansions, refinable, without errors.

§ E. Martin-Dorel: “Certified, Efficient and Sharp Univariate
Taylor Models in COQ”. 1D Taylor expansions, not refinable,
with errors.

§ K. Makino & M. Berz: “Rigourous analysis of nonlinear motion
in particle accelerators”: 1D Taylor expansions, not refinable,
with errors and ODEs.

§ FLOW ‹: https://flowstar.org/: “A verification tool for
cyber-physical systems”.

§ Automatic differentiation (forward/backward modes).
§ Many (mostly C++) libraries for (symmetric) tensors of
arbitrary rank and dimension.

4 / 32

https://flowstar.org/

Design Choices

Concerns
§ Emphasis on correction: mostly functional implementation,
strong properties statically enforced

§ Highly modular design with clear algebraic signatures

Some Choices
§ Symmetric tensors algebra as building block
§ Expansions specialized at point 0 with 0-centered errors
§ Convolution for fast product
§ Error functions to reuse same expansion anywhere around 0
§ Laziness to compute Taylor expansions on demand
§ Specialized Taylor expansion and error for exact polynomial
functions

5 / 32

Implementation Language: Ocaml

Features
§ Correct usage of data-structures, as regards size, dimension,
order, etc

§ Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

§ Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant ?

§ With GADT1, (arithmetical) proofs can be embedded in Ocaml
§ Sparse imperative features, for the sake of efficiency
§ Designed as a library, not an end-user product
§ Doesn’t cope so well with laziness

1Generalized Algebraic Data Types
6 / 32

Implementation Language: Ocaml

Features
§ Correct usage of data-structures, as regards size, dimension,
order, etc

§ Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

§ Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant ?

§ With GADT1, (arithmetical) proofs can be embedded in Ocaml
§ Sparse imperative features, for the sake of efficiency
§ Designed as a library, not an end-user product
§ Doesn’t cope so well with laziness

1Generalized Algebraic Data Types
6 / 32

Implementation Language: Ocaml

Features
§ Correct usage of data-structures, as regards size, dimension,
order, etc

§ Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

§ Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant ?

§ With GADT1, (arithmetical) proofs can be embedded in Ocaml
§ Sparse imperative features, for the sake of efficiency
§ Designed as a library, not an end-user product
§ Doesn’t cope so well with laziness

1Generalized Algebraic Data Types
6 / 32

A Glimpse of Type-level Arithmetics

From a client’s viewpoint (sample properties)

§ “Adding two tensors of order R yields a tensor of order R”.
§ “Multiplying tensors of respective orders R1 and R2 yields a
tensor of order R such that R “ R1 ` R2”.

For the developer

§ Every size/dimension/order information of data structures is
reflected in their types.

§ Dimension-related proofs are computed along regular values.
§ Negligible computational cost (in our application).
§ Useful to guide the design of complex recursive algorithms.
§ Removal of useless/impossible cases in pattern-matching.
§ In theory, a compiler could remove proofs from generated code.

7 / 32

Multivariate Taylor Expansion

§ Canonical presentation of a Taylor expansion at order R in
dimension N:

f pxq “
ř

|α|ăR

Dα
f p0q d

xα
α! `

ř

|α|“R

Dα
f pε ˚ xq d xα

α!

x P RN α P NN ε P r0, 1s

§ Not the standard “tensorized” version, where N-dimensional
expansions are 1D expansions which coefficients are
N ´ 1-dimensional expansions, etc

§ For practicality and efficiency

8 / 32

Multivariate Taylor Model

§ Taylor model derived from Taylor remainder:

| f pxq ´
ř

|α|ďR

Dα
f p0q d

xα
α! |ď

ř

|α|“R

εαf pxq d
|xα|
α!

§ With a bounding error (tensor) such that, for any ε P r0, 1s:

| Dα
f pε ˚ xq ´Dα

f p0q |ď εαf pxq

Ñ Symmetric tensors of pvalue, error functionq couples:
pDα

f p0q, ε
α
f q

9 / 32

Values & Errors

Values
§ Could be any numerical domain, but operations we intend to
support on Taylor expansions should be reflected.

§ FP numbers, complex numbers, certified FP numbers
(intervals), etc.

Errors
§ The same error function may occur many times
Ñ memoization.

§ Specialized zero errors simplify computations
Ñ special case in data-structure.

10 / 32

Values & Errors

Domain atoms
constants : pk , px0, . . . , xN´1q ÞÑ 0q
variables : p0, px0, . . . , xN´1q ÞÑ |xi |q

Domain operators

pv1, ε1q ` pv2, ε2q fi pv1 ` v2, ε1 ` ε2q
pv1, ε1q ´ pv2, ε2q fi pv1 ´ v2, ε1 ` ε2q
αˆ pv , εq fi pαˆ v , αˆ εq
pv1, ε1q ˆ pv2, ε2q fi pv1 ˆ v2, v1 ˆ ε2 ` v2 ˆ ε1 ` ε1 ˆ ε2q

epv ,εq fi pev , ev ˆ peε ´ 1qq
logpv , εq fi plog v , logp1` ε

v qq

sinpv , εq fi psin v , | sin v | ˆ p1´ cos εq ` | cos v | ˆ | sin ε|q
cospv , εq fi pcos v , | cos v | ˆ p1´ cos εq ` | sin v | ˆ | sin ε|q
. . .

11 / 32

Symmetric Tensors

Generalities
§ Symmetric tensor = homogeneous polynomial.
§ Occurrences vs indices representation Ñ ordered.indices

Si1,...,iR “ So0,...,oN´1 , such that ok “ #tj | ij “ ku.
SpX0, . . . ,XN´1q “

ř

řN´1
k“0 ok“R

So0,...,oN´1 ˆ X o0
0 ˆ . . .ˆ X

oN´1
N´1

§ pN,Rq tensors form a
`

N`R´1
R

˘

vector space.
§ pN,Rq tensors form a R-graded N-dimensional algebra.
§ Binary Decision Diagram -like recursive scheme:

SpX0, . . . ,XN´1q “ S0pX0, . . . ,XN´2q ` XN´1.S1pX0, . . . ,XN´1q

12 / 32

Symmetric Tensors

Data-structure
§ Recursive scheme:

STp0, Rq “ H
STpN ` 1, 0q “ V ˆ E
STpN ` 1, R ` 1q “ STpN, R ` 1q

ˆ STpN ` 1, Rq

type (’a, _, _) st =
| Nil: (’a, Nat.zero, ’r) st
| Leaf: ’a

-> (’a, ’n Nat.succ, Nat.zero) st
| Node: (’a, ’n, ’r Nat.succ) st

* (’a, ’n Nat.succ, ’r) st
-> (’a, ’n Nat.succ, ’r Nat.succ) st

§ An example:

s0,0 s1,0

s1,1

s2,0

s2,1

s2,2

x2

x1

x0 x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

X2pX2s2,2 ` X1s2,1 ` X0s2,0q ` X1pX1s1,1 ` X0s1,0q ` X0X0s0,0

13 / 32

Operations on Symmetric Tensors

Simple structural operations

§ Functorial operations.
§ Linear operations.

let rec map : type n r. (’a -> ’b) -> (’a, n, r) st -> (’b, n, r) st =
fun f st ->
match st with
| Nil -> Nil
| Leaf v -> Leaf (f v)
| Node (stl, str) -> Node (map f stl, map f str)

let rec apply : type n r. (’a -> ’b, n, r) st -> (’a, n, r) st -> (’b, n, r) st =
fun stf sta ->
match stf, sta with
| Nil , Nil -> Nil
| Leaf f , Leaf a -> Leaf (f a)
| Node (stfl, stfr), Node (stal, star) -> Node (apply stfl stal,

apply stfr star)

let sum st1 st2 = apply (map R.(+) st1) st2

let hadamard st1 st2 = apply (map R.(*) st1) st2

14 / 32

Operations on Symmetric Tensors

Tensor product

§ Implemented with side-effects for efficiency.
§ Optimal complexity: θppR1 ˆ R2q

N).
§ Two functions (S “ S0 ` XN´1.S1):
"

SˆT fi S0 ˆ
1 T` XN´1.pS1 ˆTq

Sˆ1 T fi SˆT0 ` XN´1.pSˆ1 T1q

15 / 32

Operations on Symmetric Tensors

Order-changing operations

§ Instantiation (fixing an index to k):

‚ r ‚ s : pN ` 1,R ` 1q ST Ñ k ď N Ñ pN ` 1,Rq ST
SrN ´ 1s fi S1
Srks fi S0rks ` XN´1.S1rks, for k ă N ´ 1

§ Generalization (multiplication by Xk):

‚ Ò ‚ : pN ` 1,Rq ST Ñ k ď N Ñ pN ` 1,R ` 1q ST
SÒpN ´ 1q fi 0` XN´1.S
SÒk fi S0 Òk ` XN´1.pS1 Òkq, for k ă N ´ 1

16 / 32

Operations on Symmetric Tensors

Order-changing operations

§ With an auxiliary coefficient tensor:
p∆kqo0,...,oN´1 fi 1` ok , for

ř

i oi “ R

§ Integration:
Xk
ş

0
SpX0, . . . , xk , . . . ,XN´1qdxk fi pSd∆´1

k qÒk

§ Differentiation: dSpX0,...,XN´1q
dXk

fi Srks d∆k

17 / 32

Illustration

s0,0,0 s1,0,0 s1,1,0

s1,1,1

s2,0,0 s2,1,0

s2,1,1

s2,2,0

s2,2,1

s2,2,2

s3,0,0 s3,1,0

s3,1,1

s3,2,0

s3,2,1

s3,2,2

s3,3,0

s3,3,1

s3,3,2

s3,3,3

x3

x2

x1

x0 x0

x0 x0

x0
x0

x1

x1

x0 x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0 x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

x3

x3

x2

x1

x0 x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

x3

x3

x2

x1

x0
x0

x1

x2

x3

18 / 32

Order-Changing Operations

let rec set : type n d k r. (d, k, n) Nat.add ->
(R.t, n Nat.succ, r Nat.succ) st -> (R.t, n Nat.succ, r) st =
fun pr st ->
match pr, st with
| Nat.Zadd , Node (stl, str) -> str
| Nat.Sadd pr’, Node (stl, str) ->
match str with
| Node _ -> Node (set pr’ stl, set pr str)
| Leaf _ -> match set pr’ stl with | Leaf v -> Leaf v

let rec lift : type n d k r. r Nat.isnat -> k Nat.isnat -> (d, k, n) Nat.add ->
(R.t, n Nat.succ, r) st -> (R.t, n Nat.succ, r Nat.succ) st =
fun r k pr st ->
match pr, st with
| Nat.Zadd , _ -> Node (make k (Nat.S r) R.zero, st)
| Nat.Sadd pr’, Leaf v -> Node (lift r k pr’ (Leaf v), Leaf R.zero)
| Nat.Sadd pr’, Node (stl, str) -> Node (lift r k pr’ stl,

lift (Nat.pred r) k pr str)

19 / 32

Operations on Symmetric Tensors

Error refinement
§ Basis rotation (SpX0,X1, . . . ,XN´1q ÞÑ SpX1,X2, . . . ,X0q):

ö S fiö pS0 ` XN´1.S1q “ S0pX1, . . . ,XN´1q ` X0. ö S1

Ñ Useful in case of ‰ error magnitudes along ‰ dimensions.
Helps balancing these differences each other out

§ Reduction and partial reduction (
ř

i ri “ k ,
ř

i oi “ R):

pΣkSqpr0,...,rN´1q fi
ÿ

po0,...,oN´1qěpr0,...,rN´1q

Spo0,...,oN´1q

where po0, . . . , oN´1q ě pr0, . . . , rN´1q is the sub-tree ordering
Ñ Cuts off higher-order terms by turning them into pure errors

(zero-valued tensors).

20 / 32

Taylor Expansions

Generalities
§ Power series as streams of tensors fZ pZ q fi

ř

rPN
Tr .Z

r :

where Tr »
ř

|α|“r

p
Dαf p0q
α! ,

Dαf pλ˚xq
α! q.xα » Tv

r ,T
ε
r

§ Taylor models T Mpf ,R, εq:

@x P RN .|x| ď εñ |f pxq ´
R
ÿ

r“0

Tv
r d xr | ď Σ0pTε

Rpεq d |x|
R
q

21 / 32

Operations on Taylor Expansions

Causality requirement

§ Every operator has to be causal, i.e. its n-th order Taylor
expansion depends at most on n-th order parts of its arguments

§ Natural for derivative part (wrt typical derivation formulas).
§ Not so natural for error part (incentive for accurate errors).
§ Mandatory for: reliability (cost prediction), solving PDEs, etc.
§ Errors can be refined afterwards.

Principal operations

§ Linear operations.
§ Product, division (Ñ convolution).
§ Composition with elementary functions.
§ Differentiation, integration.

22 / 32

Taylor Expansions

Composition

§ pf ˝ gq, where f is 1D and gp0q “ 0:

f ˝ g fi
ÿ

rPN
fr .g

r “
ÿ

rPN
Tr .Z

r

§ g is (at least) of order 1 and then g r is of order r . So:

Tv
r “

r
ÿ

k“0

f vk .rZ
r sgk

where rZ r sgk is the r -th order tensor of gk .
§ Many ways to build an error term Tε

r . . .

§ For instance, Tε
r “ fεr ˝ gk , where

gkpεq fi |
k
ř

r“0
Tv

r d εr | ` Σ0pTε
kpεq d |ε|

k
q

23 / 32

Taylor Expansions

1D series of elementary functions

§ Factorize out constant part (evaluation at point 0).
§ Compute the n-th derivative in the Value-Error domain, which
yields:

§ a value at 0.
§ an error function.

§ Examples:

‚ exppx0 ` x 1q “ exppx0q exppx 1q
Dr

exppεq “ exppεq
‚ logpx0 ` x 1q “ logpx0q ` logp1` x 1

x0
q

Dr`1
log pεq “ ´pr ` 1q! ˚ p ´1

1`ε q
r`1

‚ sinpx0 ` x 1q “ sinpx0q cospx 1q ` cospx0q sinpx 1q
D2r

sinpεq “ p´1qr sinpεq
‚ atanpx0 ` x 1q “ atanpx0q ` atanp x 1

1`x0x 1 q

Dr`2
atanpεq “ p´2pr ` 1qεDr`1

atanpεq ´ r ˚ pr ` 1q ˚Dr
atanpεqq{p1` ε2q

24 / 32

Taylor Expansions
Disciplined convolution

§ Efficient product:

p
ř

rPN
Tr .Z

r q ˆ p
ř

rPN
Sr .Z

r q “
ř

rPN
p
ř

iPN
Ti ˆ Sr´i qZ

r

§ Convolution structure (l1 ` l2 “ . . . “ r1 ` r2 “ r):

Tl1 Tl1`1 . . . Tr1

Sl2 Sl2´1 . . . Sr2

§ Column-wise tensor products give all additive contributions to
order r tensor.

§ Adding elements (r Ñ r ` 1q :

ðTl1ðTl1`1ð . . .ðTr1ðTr1`1

Sl2`1 Sl2 Sl2´1 . . . Sr2

25 / 32

Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ For an equation in solved-form:

f pxq “ f p0q `

x
ż

0

exprph, f phqqdh

The following sequence of iterates:

φ0pxq “ 0, φn`1pxq “ F pφnqpxq “ f p0q `

x
ż

0

exprph, φnphqqdh

converges to a solution of the equation.

26 / 32

Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ How to compute (a Taylor expansion of) lim
nÑ8

φn ?
Ñ We just interpret functional F in our Taylor algebra.

§ Even simpler2, the limit φ8 “ F pφ8q is an ordinary recursive
(lazy) value.

§ The polynomial expansion comes for free, no solving or
iteration is needed (just write down the solved-form equation).

§ Mutual and multi-dimensional (causal) equations are also
supported.

§ What for the error part ?

2in Ocaml
27 / 32

Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ How to compute (a Taylor expansion of) lim
nÑ8

φn ?
Ñ We just interpret functional F in our Taylor algebra.

§ Even simpler2, the limit φ8 “ F pφ8q is an ordinary recursive
(lazy) value.

§ The polynomial expansion comes for free, no solving or
iteration is needed (just write down the solved-form equation).

§ Mutual and multi-dimensional (causal) equations are also
supported.

§ What for the error part ?

2in Ocaml
27 / 32

Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ For the error part, extra fixed point computation is needed.
§ Suppose one wants to compute an error tensor part at order k .

§ Assume φkpxq “
k
ř

r“0
Tv

r d xr ˘ Σ0pTε
kpxq d xkq

§ Then φk`1 “ F pφkq, by virtue of integration, has an order
k ` 1 error term, Tε

k`1.
§ So we have a fixed point whenever, for a given x:

Σ0pTε
kpxq d |x|kq ď Σ0|Tv

k d |x|k ˘Tε
k`1pxq d |x|k`1

|

§ Stronger but more tractable component-wise constraint:
Tε

kpxq d |x|k ď |Tv
k d |x|k ˘Tε

k`1pxq d |x|k`1
|

§ The least such Tε
k may be computed component-wise, by

dichotomy for instance.

28 / 32

Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ For the error part, extra fixed point computation is needed.
§ Suppose one wants to compute an error tensor part at order k .

§ Assume φkpxq “
k
ř

r“0
Tv

r d xr ˘ Σ0pTε
kpxq d xkq

§ Then φk`1 “ F pφkq, by virtue of integration, has an order
k ` 1 error term, Tε

k`1.
§ So we have a fixed point whenever, for a given x:

Σ0pTε
kpxq d |x|kq ď Σ0|Tv

k d |x|k ˘Tε
k`1pxq d |x|k`1

|

§ Stronger but more tractable component-wise constraint:
Tε

kpxq d |x|k ď |Tv
k d |x|k ˘Tε

k`1pxq d |x|k`1
|

§ The least such Tε
k may be computed component-wise, by

dichotomy for instance.

28 / 32

Conclusion

§ GADT and type-level arithmetics are a great help.
§ Only numerical bugs unveiled („6.5kLoc).
§ How to get rid of proof terms ?
§ Unfamiliar co-inductive error formulation, but more flexible.
§ Hard work to tame complexity blow-ups.

29 / 32

Perspectives
§ Complete PDE solving (error terms).
§ More efforts toward efficiency (memory allocations).
§ Certified floating-point errors.

§ Better error models such as intervals, zonotopes:

v ˘ εpAq becomes v `
ÿ

iPr0,N´1s

Xiκi pAq ` ρpAq

§ Less space-wasting tensor scheme with co-tensors.
§ Disciplined composition with Faa Di Bruno’s formula:

dn

dxn
f pgpxqq “

ÿ n!

m1!m2! ¨ ¨ ¨ mn!
f pm1`¨¨¨`mnqpgpxqq

n
ź

j“1

ˆ

g pjqpxq

j!

˙mj

where
n
ř

i“1
i ˚mi “ n

§ Beyond monomial basis: Poisson basis, Hermite basis.
§ Beyond natural exponents: Laurent series, Puiseux series.
§ Full correction proofs (algebraic and approximation properties).

30 / 32

Perspectives
§ Complete PDE solving (error terms).
§ More efforts toward efficiency (memory allocations).
§ Certified floating-point errors.
§ Better error models such as intervals, zonotopes:

v ˘ εpAq becomes v `
ÿ

iPr0,N´1s

Xiκi pAq ` ρpAq

§ Less space-wasting tensor scheme with co-tensors.
§ Disciplined composition with Faa Di Bruno’s formula:

dn

dxn
f pgpxqq “

ÿ n!

m1!m2! ¨ ¨ ¨ mn!
f pm1`¨¨¨`mnqpgpxqq

n
ź

j“1

ˆ

g pjqpxq

j!

˙mj

where
n
ř

i“1
i ˚mi “ n

§ Beyond monomial basis: Poisson basis, Hermite basis.
§ Beyond natural exponents: Laurent series, Puiseux series.

§ Full correction proofs (algebraic and approximation properties).

30 / 32

Perspectives
§ Complete PDE solving (error terms).
§ More efforts toward efficiency (memory allocations).
§ Certified floating-point errors.
§ Better error models such as intervals, zonotopes:

v ˘ εpAq becomes v `
ÿ

iPr0,N´1s

Xiκi pAq ` ρpAq

§ Less space-wasting tensor scheme with co-tensors.
§ Disciplined composition with Faa Di Bruno’s formula:

dn

dxn
f pgpxqq “

ÿ n!

m1!m2! ¨ ¨ ¨ mn!
f pm1`¨¨¨`mnqpgpxqq

n
ź

j“1

ˆ

g pjqpxq

j!

˙mj

where
n
ř

i“1
i ˚mi “ n

§ Beyond monomial basis: Poisson basis, Hermite basis.
§ Beyond natural exponents: Laurent series, Puiseux series.
§ Full correction proofs (algebraic and approximation properties).

30 / 32

A small demo

Goddard’s rocket equations:
$

’

&

’

%

9r “ v

9v “ ´
Dpr ,vq

m
v
||v || ´ gprq ` C u

m

9m “ ´b||u||

where:

Dpr , vq “ KD ||v ||
2e´kr p||r ||´1q is the drag

gprq “ G m
||r ||2

is the gravity
C u

m is the thrust
b||u|| is the fuel consumption

31 / 32

Thank you
for your attention !

Any questions ?

32 / 32

	Context
	Taylor Expansions Building Blocks
	Values and Errors
	Symmetric Tensors
	Taylor Expansions

	Conclusion

