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Taylor Approximations

Context: static analysis of plant-controller systems

§ Provide approximations of non-polynomial functions

Goal: flexible framework for an algebra of Taylor expansions

§ Multivariate case (any dimension)
§ Certified errors
§ Independent value and error domain
§ On-demand refinable approximations (any order)
§ Support integral/differential operators (physical-level
invariants)

§ Solve differential equations (fixed points)
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Some Relevant Works

§ J. Karczmarczuk: “Functional Differentiation of computer
Programs”. 1D Taylor expansions, refinable, without errors.

§ E. Martin-Dorel: “Certified, Efficient and Sharp Univariate
Taylor Models in COQ”. 1D Taylor expansions, not refinable,
with errors.

§ K. Makino & M. Berz: “Rigourous analysis of nonlinear motion
in particle accelerators”: 1D Taylor expansions, not refinable,
with errors and ODEs.

§ FLOW ‹: https://flowstar.org/: “A verification tool for
cyber-physical systems”.

§ Automatic differentiation (forward/backward modes).
§ Many (mostly C++) libraries for (symmetric) tensors of
arbitrary rank and dimension.
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Design Choices

Concerns
§ Emphasis on correction: mostly functional implementation,
strong properties statically enforced

§ Highly modular design with clear algebraic signatures

Some Choices
§ Symmetric tensors algebra as building block
§ Expansions specialized at point 0 with 0-centered errors
§ Convolution for fast product
§ Error functions to reuse same expansion anywhere around 0
§ Laziness to compute Taylor expansions on demand
§ Specialized Taylor expansion and error for exact polynomial
functions
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Implementation Language: Ocaml

Features
§ Correct usage of data-structures, as regards size, dimension,
order, etc

§ Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

§ Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant ?

§ With GADT1, (arithmetical) proofs can be embedded in Ocaml
§ Sparse imperative features, for the sake of efficiency
§ Designed as a library, not an end-user product
§ Doesn’t cope so well with laziness

1Generalized Algebraic Data Types
6 / 32



Implementation Language: Ocaml

Features
§ Correct usage of data-structures, as regards size, dimension,
order, etc

§ Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

§ Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant ?

§ With GADT1, (arithmetical) proofs can be embedded in Ocaml
§ Sparse imperative features, for the sake of efficiency
§ Designed as a library, not an end-user product
§ Doesn’t cope so well with laziness

1Generalized Algebraic Data Types
6 / 32



Implementation Language: Ocaml

Features
§ Correct usage of data-structures, as regards size, dimension,
order, etc

§ Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

§ Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant ?

§ With GADT1, (arithmetical) proofs can be embedded in Ocaml
§ Sparse imperative features, for the sake of efficiency
§ Designed as a library, not an end-user product
§ Doesn’t cope so well with laziness

1Generalized Algebraic Data Types
6 / 32



A Glimpse of Type-level Arithmetics

From a client’s viewpoint (sample properties)

§ “Adding two tensors of order R yields a tensor of order R”.
§ “Multiplying tensors of respective orders R1 and R2 yields a
tensor of order R such that R “ R1 ` R2”.

For the developer

§ Every size/dimension/order information of data structures is
reflected in their types.

§ Dimension-related proofs are computed along regular values.
§ Negligible computational cost (in our application).
§ Useful to guide the design of complex recursive algorithms.
§ Removal of useless/impossible cases in pattern-matching.
§ In theory, a compiler could remove proofs from generated code.
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Multivariate Taylor Expansion

§ Canonical presentation of a Taylor expansion at order R in
dimension N:

f pxq “
ř

|α|ăR

Dα
f p0q d

xα
α! `

ř

|α|“R

Dα
f pε ˚ xq d xα

α!

x P RN α P NN ε P r0, 1s

§ Not the standard “tensorized” version, where N-dimensional
expansions are 1D expansions which coefficients are
N ´ 1-dimensional expansions, etc

§ For practicality and efficiency
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Multivariate Taylor Model

§ Taylor model derived from Taylor remainder:

| f pxq ´
ř

|α|ďR

Dα
f p0q d

xα
α! |ď

ř

|α|“R

εαf pxq d
|xα|
α!

§ With a bounding error (tensor) such that, for any ε P r0, 1s:

| Dα
f pε ˚ xq ´Dα

f p0q |ď εαf pxq

Ñ Symmetric tensors of pvalue, error functionq couples:
pDα

f p0q, ε
α
f q
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Values & Errors

Values
§ Could be any numerical domain, but operations we intend to
support on Taylor expansions should be reflected.

§ FP numbers, complex numbers, certified FP numbers
(intervals), etc.

Errors
§ The same error function may occur many times
Ñ memoization.

§ Specialized zero errors simplify computations
Ñ special case in data-structure.
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Values & Errors

Domain atoms
constants : pk , px0, . . . , xN´1q ÞÑ 0q
variables : p0, px0, . . . , xN´1q ÞÑ |xi |q

Domain operators

pv1, ε1q ` pv2, ε2q fi pv1 ` v2, ε1 ` ε2q
pv1, ε1q ´ pv2, ε2q fi pv1 ´ v2, ε1 ` ε2q
αˆ pv , εq fi pαˆ v , αˆ εq
pv1, ε1q ˆ pv2, ε2q fi pv1 ˆ v2, v1 ˆ ε2 ` v2 ˆ ε1 ` ε1 ˆ ε2q

epv ,εq fi pev , ev ˆ peε ´ 1qq
logpv , εq fi plog v , logp1` ε

v qq

sinpv , εq fi psin v , | sin v | ˆ p1´ cos εq ` | cos v | ˆ | sin ε|q
cospv , εq fi pcos v , | cos v | ˆ p1´ cos εq ` | sin v | ˆ | sin ε|q
. . .
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Symmetric Tensors

Generalities
§ Symmetric tensor = homogeneous polynomial.
§ Occurrences vs indices representation Ñ ordered.indices

Si1,...,iR “ So0,...,oN´1 , such that ok “ #tj | ij “ ku.
SpX0, . . . ,XN´1q “

ř

řN´1
k“0 ok“R

So0,...,oN´1 ˆ X o0
0 ˆ . . .ˆ X

oN´1
N´1

§ pN,Rq tensors form a
`

N`R´1
R

˘

vector space.
§ pN,Rq tensors form a R-graded N-dimensional algebra.
§ Binary Decision Diagram -like recursive scheme:

SpX0, . . . ,XN´1q “ S0pX0, . . . ,XN´2q ` XN´1.S1pX0, . . . ,XN´1q
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Symmetric Tensors

Data-structure
§ Recursive scheme:

STp0, Rq “ H
STpN ` 1, 0q “ V ˆ E
STpN ` 1, R ` 1q “ STpN, R ` 1q

ˆ STpN ` 1, Rq

type (’a, _, _) st =
| Nil: (’a, Nat.zero, ’r) st
| Leaf: ’a

-> (’a, ’n Nat.succ, Nat.zero) st
| Node: (’a, ’n, ’r Nat.succ) st

* (’a, ’n Nat.succ, ’r) st
-> (’a, ’n Nat.succ, ’r Nat.succ) st

§ An example:

s0,0 s1,0

s1,1

s2,0

s2,1

s2,2

x2

x1

x0 x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

X2pX2s2,2 ` X1s2,1 ` X0s2,0q ` X1pX1s1,1 ` X0s1,0q ` X0X0s0,0
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Operations on Symmetric Tensors

Simple structural operations

§ Functorial operations.
§ Linear operations.

let rec map : type n r. (’a -> ’b) -> (’a, n, r) st -> (’b, n, r) st =
fun f st ->
match st with
| Nil -> Nil
| Leaf v -> Leaf (f v)
| Node (stl, str) -> Node (map f stl, map f str)

let rec apply : type n r. (’a -> ’b, n, r) st -> (’a, n, r) st -> (’b, n, r) st =
fun stf sta ->
match stf, sta with
| Nil , Nil -> Nil
| Leaf f , Leaf a -> Leaf (f a)
| Node (stfl, stfr), Node (stal, star) -> Node (apply stfl stal,

apply stfr star)

let sum st1 st2 = apply (map R.( + ) st1) st2

let hadamard st1 st2 = apply (map R.( * ) st1) st2
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Operations on Symmetric Tensors

Tensor product

§ Implemented with side-effects for efficiency.
§ Optimal complexity: θppR1 ˆ R2q

N).
§ Two functions (S “ S0 ` XN´1.S1):
"

SˆT fi S0 ˆ
1 T` XN´1.pS1 ˆTq

Sˆ1 T fi SˆT0 ` XN´1.pSˆ1 T1q
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Operations on Symmetric Tensors

Order-changing operations

§ Instantiation (fixing an index to k):

‚ r ‚ s : pN ` 1,R ` 1q ST Ñ k ď N Ñ pN ` 1,Rq ST
SrN ´ 1s fi S1
Srks fi S0rks ` XN´1.S1rks, for k ă N ´ 1

§ Generalization (multiplication by Xk):

‚ Ò ‚ : pN ` 1,Rq ST Ñ k ď N Ñ pN ` 1,R ` 1q ST
SÒpN ´ 1q fi 0` XN´1.S
SÒk fi S0 Òk ` XN´1.pS1 Òkq, for k ă N ´ 1
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Operations on Symmetric Tensors

Order-changing operations

§ With an auxiliary coefficient tensor:
p∆kqo0,...,oN´1 fi 1` ok , for

ř

i oi “ R

§ Integration:
Xk
ş

0
SpX0, . . . , xk , . . . ,XN´1qdxk fi pSd∆´1

k qÒk

§ Differentiation: dSpX0,...,XN´1q
dXk

fi Srks d∆k
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Illustration
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s3,2,2

s3,3,0
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x1

x0 x0

x0
x0

x1

x1
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x2
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x1
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x3
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Order-Changing Operations

let rec set : type n d k r. (d, k, n) Nat.add ->
(R.t, n Nat.succ, r Nat.succ) st -> (R.t, n Nat.succ, r) st =
fun pr st ->
match pr, st with
| Nat.Zadd , Node (stl, str) -> str
| Nat.Sadd pr’, Node (stl, str) ->
match str with
| Node _ -> Node (set pr’ stl, set pr str)
| Leaf _ -> match set pr’ stl with | Leaf v -> Leaf v

let rec lift : type n d k r. r Nat.isnat -> k Nat.isnat -> (d, k, n) Nat.add ->
(R.t, n Nat.succ, r) st -> (R.t, n Nat.succ, r Nat.succ) st =
fun r k pr st ->
match pr, st with
| Nat.Zadd , _ -> Node (make k (Nat.S r) R.zero, st)
| Nat.Sadd pr’, Leaf v -> Node (lift r k pr’ (Leaf v), Leaf R.zero)
| Nat.Sadd pr’, Node (stl, str) -> Node (lift r k pr’ stl,

lift (Nat.pred r) k pr str)
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Operations on Symmetric Tensors

Error refinement
§ Basis rotation (SpX0,X1, . . . ,XN´1q ÞÑ SpX1,X2, . . . ,X0q):

ö S fiö pS0 ` XN´1.S1q “ S0pX1, . . . ,XN´1q ` X0. ö S1

Ñ Useful in case of ‰ error magnitudes along ‰ dimensions.
Helps balancing these differences each other out

§ Reduction and partial reduction (
ř

i ri “ k ,
ř

i oi “ R):

pΣkSqpr0,...,rN´1q fi
ÿ

po0,...,oN´1qěpr0,...,rN´1q

Spo0,...,oN´1q

where po0, . . . , oN´1q ě pr0, . . . , rN´1q is the sub-tree ordering
Ñ Cuts off higher-order terms by turning them into pure errors

(zero-valued tensors).
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Taylor Expansions

Generalities
§ Power series as streams of tensors fZ pZ q fi

ř

rPN
Tr .Z

r :

where Tr »
ř

|α|“r

p
Dαf p0q
α! ,

Dαf pλ˚xq
α! q.xα » Tv

r ,T
ε
r

§ Taylor models T Mpf ,R, εq:

@x P RN .|x| ď εñ |f pxq ´
R
ÿ

r“0

Tv
r d xr | ď Σ0pTε

Rpεq d |x|
R
q
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Operations on Taylor Expansions

Causality requirement

§ Every operator has to be causal, i.e. its n-th order Taylor
expansion depends at most on n-th order parts of its arguments

§ Natural for derivative part (wrt typical derivation formulas).
§ Not so natural for error part (incentive for accurate errors).
§ Mandatory for: reliability (cost prediction), solving PDEs, etc.
§ Errors can be refined afterwards.

Principal operations

§ Linear operations.
§ Product, division (Ñ convolution).
§ Composition with elementary functions.
§ Differentiation, integration.
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Taylor Expansions

Composition

§ pf ˝ gq, where f is 1D and gp0q “ 0:

f ˝ g fi
ÿ

rPN
fr .g

r “
ÿ

rPN
Tr .Z

r

§ g is (at least) of order 1 and then g r is of order r . So:

Tv
r “

r
ÿ

k“0

f vk .rZ
r sgk

where rZ r sgk is the r -th order tensor of gk .
§ Many ways to build an error term Tε

r . . .

§ For instance, Tε
r “ fεr ˝ gk , where

gkpεq fi |
k
ř

r“0
Tv

r d εr | ` Σ0pTε
kpεq d |ε|

k
q
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Taylor Expansions

1D series of elementary functions

§ Factorize out constant part (evaluation at point 0).
§ Compute the n-th derivative in the Value-Error domain, which
yields:

§ a value at 0.
§ an error function.

§ Examples:

‚ exppx0 ` x 1q “ exppx0q exppx 1q
Dr

exppεq “ exppεq
‚ logpx0 ` x 1q “ logpx0q ` logp1` x 1

x0
q

Dr`1
log pεq “ ´pr ` 1q! ˚ p ´1

1`ε q
r`1

‚ sinpx0 ` x 1q “ sinpx0q cospx 1q ` cospx0q sinpx 1q
D2r

sinpεq “ p´1qr sinpεq
‚ atanpx0 ` x 1q “ atanpx0q ` atanp x 1

1`x0x 1 q

Dr`2
atanpεq “ p´2pr ` 1qεDr`1

atanpεq ´ r ˚ pr ` 1q ˚Dr
atanpεqq{p1` ε2q
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Taylor Expansions
Disciplined convolution

§ Efficient product:

p
ř

rPN
Tr .Z

r q ˆ p
ř

rPN
Sr .Z

r q “
ř

rPN
p
ř

iPN
Ti ˆ Sr´i qZ

r

§ Convolution structure (l1 ` l2 “ . . . “ r1 ` r2 “ r):

Tl1 Tl1`1 . . . Tr1

Sl2 Sl2´1 . . . Sr2

§ Column-wise tensor products give all additive contributions to
order r tensor.

§ Adding elements (r Ñ r ` 1q :

ðTl1ðTl1`1ð . . .ðTr1ðTr1`1

Sl2`1 Sl2 Sl2´1 . . . Sr2
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Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ For an equation in solved-form:

f pxq “ f p0q `

x
ż

0

exprph, f phqqdh

The following sequence of iterates:

φ0pxq “ 0, φn`1pxq “ F pφnqpxq “ f p0q `

x
ż

0

exprph, φnphqqdh

converges to a solution of the equation.
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Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ How to compute (a Taylor expansion of) lim
nÑ8

φn ?
Ñ We just interpret functional F in our Taylor algebra.

§ Even simpler2, the limit φ8 “ F pφ8q is an ordinary recursive
(lazy) value.

§ The polynomial expansion comes for free, no solving or
iteration is needed (just write down the solved-form equation).

§ Mutual and multi-dimensional (causal) equations are also
supported.

§ What for the error part ?

2in Ocaml
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Taylor Expansions

Solving PDE with Picard-Lindelöf theorem

§ For the error part, extra fixed point computation is needed.
§ Suppose one wants to compute an error tensor part at order k .

§ Assume φkpxq “
k
ř

r“0
Tv

r d xr ˘ Σ0pTε
kpxq d xkq

§ Then φk`1 “ F pφkq, by virtue of integration, has an order
k ` 1 error term, Tε

k`1.
§ So we have a fixed point whenever, for a given x:

Σ0pTε
kpxq d |x|kq ď Σ0|Tv

k d |x|k ˘Tε
k`1pxq d |x|k`1

|

§ Stronger but more tractable component-wise constraint:
Tε

kpxq d |x|k ď |Tv
k d |x|k ˘Tε

k`1pxq d |x|k`1
|

§ The least such Tε
k may be computed component-wise, by

dichotomy for instance.
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Conclusion

§ GADT and type-level arithmetics are a great help.
§ Only numerical bugs unveiled („6.5kLoc).
§ How to get rid of proof terms ?
§ Unfamiliar co-inductive error formulation, but more flexible.
§ Hard work to tame complexity blow-ups.
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Perspectives
§ Complete PDE solving (error terms).
§ More efforts toward efficiency (memory allocations).
§ Certified floating-point errors.

§ Better error models such as intervals, zonotopes:

v ˘ εpAq becomes v `
ÿ

iPr0,N´1s

Xiκi pAq ` ρpAq

§ Less space-wasting tensor scheme with co-tensors.
§ Disciplined composition with Faa Di Bruno’s formula:

dn

dxn
f pgpxqq “

ÿ n!

m1!m2! ¨ ¨ ¨ mn!
f pm1`¨¨¨`mnqpgpxqq

n
ź

j“1

ˆ

g pjqpxq

j!

˙mj

where
n
ř

i“1
i ˚mi “ n

§ Beyond monomial basis: Poisson basis, Hermite basis.
§ Beyond natural exponents: Laurent series, Puiseux series.
§ Full correction proofs (algebraic and approximation properties).
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A small demo

Goddard’s rocket equations:
$

’

&

’

%

9r “ v

9v “ ´
Dpr ,vq

m
v
||v || ´ gprq ` C u

m

9m “ ´b||u||

where:

Dpr , vq “ KD ||v ||
2e´kr p||r ||´1q is the drag

gprq “ G m
||r ||2

is the gravity
C u

m is the thrust
b||u|| is the fuel consumption
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Thank you
for your attention !

Any questions ?
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