My Taylor is rich
FEANICSES workshop

Xavier Thirioux
IRIT/INPT

may 2018

1 /20

Outline

Context

Taylor Expansions Building Blocks
Values and Errors
Symmetric Tensors
Taylor Expansions

Conclusion

2 /29

Taylor Approximations

Context: static analysis of plant-controller systems

» Provide approximations of non-polynomial functions

Goal: flexible framework for an algebra of Taylor expansions

» Multivariate case (any dimension)

» Certified errors

» Independent value and error domain

» On-demand refinable approximations (any order)

» Support integral/differential operators (physical-level
invariants)

» Solve differential equations (fixed points)

2/ 20

Some Relevant Works

» J. Karczmarczuk: “Functional Differentiation of computer
Programs”. 1D Taylor expansions, refinable, without errors.

» E. Martin-Dorel: “Certified, Efficient and Sharp Univariate
Taylor Models in COQ". 1D Taylor expansions, not refinable,
with errors.

» K. Makino & M. Berz: “Rigourous analysis of nonlinear motion
in particle accelerators”: 1D Taylor expansions, not refinable,
with errors and ODEs.

» FLOW™: https://flowstar.org/: “A verification tool for
cyber-physical systems”.
» Automatic differentiation (forward/backward modes).

» Many (mostly C++) libraries for (symmetric) tensors of
arbitrary rank and dimension.

A/ 2D

https://flowstar.org/

Design Choices

Concerns
» Emphasis on correction: mostly functional implementation,
strong properties statically enforced

» Highly modular design with clear algebraic signatures

Some Choices

» Symmetric tensors algebra as building block

» Expansions specialized at point 0 with 0-centered errors

» Convolution for fast product

» Error functions to reuse same expansion anywhere around 0
» Laziness to compute Taylor expansions on demand

» Specialized Taylor expansion and error for exact polynomial
functions

5 /22D

Implementation Language: Ocaml

Features

» Correct usage of data-structures, as regards size, dimension,
order, etc

» Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

» Intimate blending of proofs and programs

1Generalized Algebraic Data Types

A /D

Implementation Language: Ocaml

Features

» Correct usage of data-structures, as regards size, dimension,
order, etc

» Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

» Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

1Generalized Algebraic Data Types

A /D

Implementation Language: Ocaml

Features

» Correct usage of data-structures, as regards size, dimension,
order, etc

» Various algebras through module system: value/error,
symmetric tensor, Taylor expansion (1D, standard, refined)

» Intimate blending of proofs and programs

Helps focusing on numerical concerns: correctness of
approximation, precision, convergence

Why not use a proof-assistant 7

» With GADT?, (arithmetical) proofs can be embedded in Ocaml
» Sparse imperative features, for the sake of efficiency

» Designed as a library, not an end-user product

» Doesn't cope so well with laziness

1Generalized Algebraic Data Types

A/ 2D

A Glimpse of Type-level Arithmetics

From a client’s viewpoint (sample properties)

» “Adding two tensors of order R yields a tensor of order R".

» “Multiplying tensors of respective orders Ry and R» yields a
tensor of order R such that R = R + Ry

For the developer

» Every size/dimension/order information of data structures is
reflected in their types.

» Dimension-related proofs are computed along regular values.
» Negligible computational cost (in our application).

» Useful to guide the design of complex recursive algorithms.
» Removal of useless/impossible cases in pattern-matching.

» In theory, a compiler could remove proofs from generated code.

=z /29

Multivariate Taylor Expansion

» Canonical presentation of a Taylor expansion at order R in
dimension N:

f(x)= 3 DE0)O% + 3 Df(exx) 0%

|| <R |a|=R
xeRV aeNV €€]0,1]

» Not the standard “tensorized” version, where N-dimensional
expansions are 1D expansions which coefficients are
N — 1-dimensional expansions, etc

» For practicality and efficiency

Q /29

Multivariate Taylor Model

» Taylor model derived from Taylor remainder:

[fx)— X D00 < X erx) o

la|<R |a|=R
» With a bounding error (tensor) such that, for any € € [0, 1]:
| D2 (e xx) — DF(0) |< €3 (x)

— Symmetric tensors of (value, error function) couples:
(D7 (0), €7)

/20

Values & Errors

Values
» Could be any numerical domain, but operations we intend to
support on Taylor expansions should be reflected.

» FP numbers, complex numbers, certified FP numbers
(intervals), etc.

Errors

» The same error function may occur many times
— memoization.

» Specialized zero errors simplify computations
— special case in data-structure.

10 / 0D

Values & Errors

Domain atoms
constants : (k, (x0,...,xy—1) — 0)
0

variables : (0, (xo,...,xn—1) — |Xi|)

Domain operators

(vi,e1) + (v2,€2) = (vi + v2,€1 + €2)

(vi,e1) — (2762) = (vi — v, €1 + €2)

ax (vye) = (axv,axe)

(vl,el) (V2,62) = (Vl X Vo,V1 X €2+ Vo X €1 + €1 X 62)
e(v:e) = (e¥,e¥ x (e —1))

log(v,€) = (log v, log(1+ %))

sin(v,e) = (sinv,|sinv| x (1 —cose) + |cosv| X |sine|)
cos(v,€) = (cosv,|cosv| x (1 —cose) + |sinv| x |sine|)

11 / 0D

Symmetric Tensors

Generalities

» Symmetric tensor = homogeneous polynomial.

» Occurrences vs indices representation — ordered.indices
Sii,...ir = Sop,...,on_1+ such that o = #{j | ij = k}.
S(Xo,-- s Xn—1) = X Sopong X X§° X ... x X

N-T _
k=0 0k=R

» (N, R) tensors form a (V*E~1) vector space.
» (N, R) tensors form a R-graded N-dimensional algebra.

» Binary Decision Diagram -like recursive scheme:

S(Xo, R ,XNfl) = So(Xo, - ,XN,Q) + XNfl‘Sl(XO, - ,XNfl)

12 / 0

Symmetric Tensors

Data-structure

» Recursive scheme:

type (’a, _, _) st =
| Nil: (’a, Nat.zero, ’r) st
ST(O,R) =& | Leaf: ’a
ST(N+1,0) =V xE -> (’a, ’n Nat.succ, Nat.zero) st
ST(N+1,R+1) =ST(N,R+1) | Node: (’a, ’n, ’r Nat.succ) st
X ST(N +1,R) * (’a, ’n Nat.succ, ’r) st

-> (’a, ’n Nat.succ, ’r Nat.succ) st

» An example: /\
_ o

X1 X1 X2 N
/</ \7\ /< 2
_ X ' ox
Xo X0 X1 " X1 "
> 3\ /\’ s1,1)(52,1
7 x X X
Y X Y X Y
e 50,0 r'e s1.0 'e 52,0

Xo(Xas22 + X152.1 + Xosz,0) + X1(Xis1,1 + Xosi,0) + XoXoSo0

12/ 20

Operations on Symmetric Tensors

Simple structural operations

» Functorial operations.

» Linear operations.

let rec map : type n r. (’a -> ’b) -> (’a, n, r) st -> b, n, r) st =

fun f st ->

match st with

| Nil -> Nil

| Leaf v -> Leaf (f v)

| Node (stl, str) -> Node (map f stl, map f str)

let rec apply : type n r. (’a -> ’b, n, r) st -> (’a, n, r) st -> (b, n, r) st =
fun stf sta ->
match stf, sta with
| Nil , Nil -> Nil
| Leaf f , Leaf a -> Leaf (f a)
| Node (stfl, stfr), Node (stal, star) -> Node (apply stfl stal,
apply stfr star)

let sum stl st2 = apply (map R.(+) st1) st2

let hadamard st1 st2 = apply (map R.(*) stl1) st2

14 / 2D

Operations on Symmetric Tensors

Tensor product

» Implemented with side-effects for efficiency.
» Optimal complexity: A((Ry x Ro)N).

» Two functions (S = So + Xy_1.51):
SxT=S5g X/T+XN_1.(51 X T)
Sx'T=Sx To + XN,l.(S x/ Tl)

15 /20

Operations on Symmetric Tensors

Order-changing operations

» Instantiation (fixing an index to k):

a[a]:(N+1,R+1)ST > k<N (N+1,R)ST
S[N—l]ﬁsl
S[k] = So[k] +XN_1.Sl[k], fork<N-1

» Generalization (multiplication by Xj):
ste (N+1L,R)ST>k<N—->(N+1,R+1)ST

ST(N—I) =0+ Xy_1.S
Stk =Sotk + Xn_1.(S11k), for k < N—1

16 / D

Operations on Symmetric Tensors

Order-changing operations

» With an auxiliary coefficient tensor:
(Ak)oo,m,ONA =1+ o, for Z,’Oi =R

Xy
> Integration: S(Xo, ..., Xk, ..., Xn—1)dxk = (SO A) Tk
0

. . dS(Xo,e Xn_1)
» Differentiation: w = S[k] © A

17 / 0D

[llustration -
X3
X2 X2
A\ X
xo/g 1/\X1 xl/\Xl \xz,\)Q
INavaNE
X X0 X X0 x. X1 X X0 x X1 x. X1
AT R N DA
30 3X0 50 Xo 5 X0 3X0
!50?0.0 051*,0,0.51*,1,0 !52 ,0, 0!52*1 o 5272,0

X3

Order-Changing Operations

let rec set : typend k r. (d, k, n) Nat.add ->
(R.t, n Nat.succ, r Nat.succ) st -> (R.t, n Nat.succ, r) st =
fun pr st ->
match pr, st with
| Nat.Zadd , Node (stl, str) -> str
| Nat.Sadd pr’, Node (stl, str) ->
match str with
| Node _ -> Node (set pr’ stl, set pr str)
| Leaf _ -> match set pr’ stl with | Leaf v -> Leaf v

let rec 1lift : type n d k r. r Nat.isnat -> k Nat.isnat -> (d, k, n) Nat.add ->
(R.t, n Nat.succ, r) st -> (R.t, n Nat.succ, r Nat.succ) st =
fun r k pr st ->
match pr, st with
| Nat.Zadd - -> Node (make k (Nat.S r) R.zero, st)
| Nat.Sadd pr’, Leaf v -> Node (lift r k pr’ (Leaf v), Leaf R.zero)
| Nat.Sadd pr’, Node (stl, str) -> Node (lift r k pr’ stl,
lift (Nat.pred r) k pr str)

10 / 20

Operations on Symmetric Tensors

Error refinement
» Basis rotation (S(Xp, X1, ..., Xn—1) — S(X1, X2,..., X0)):

OS =20 (So + XN_l.S]_) = S()(Xl, ... 7XN—1) + Xo. OS5y

— Useful in case of # error magnitudes along # dimensions.
Helps balancing these differences each other out

> Reduction and partial reduction (3, ri = k, >;; 0 = R):

(st)(roam,r/vq) = Z s(Oo ~~~~~ on-1)

(005--,0n—1)=(r05--+s'N—1)

where (og,...,on—1) = (ro,...,rny—1) is the sub-tree ordering

— Cuts off higher-order terms by turning them into pure errors
(zero-valued tensors).

20 / D

Taylor Expansions

Generalities

» Power series as streams of tensors fz(Z) = >, T,.Z":

reN
where T, >~ >’ (D‘f;(lo), Df(a/\.*x)) ~ T/, T,
leel=r
» Taylor models TM(f, R, €):
vx e RV |x| < € = |f(x) ZTv@Xr’ O(TR(e) @)

21 /2

Operations on Taylor Expansions

Causality requirement

» Every operator has to be causal, i.e. its n-th order Taylor
expansion depends at most on n-th order parts of its arguments

» Natural for derivative part (wrt typical derivation formulas).
» Not so natural for error part (incentive for accurate errors).
» Mandatory for: reliability (cost prediction), solving PDEs, etc.

» Errors can be refined afterwards.

Principal operations

» Linear operations.
» Product, division (— convolution).
» Composition with elementary functions.

» Differentiation, integration.

29 /2D

Taylor Expansions
Composition
» (fog), where fis 1D and g(0) = 0:
fog= 2 frg’ = ET,.Z’
reN reN

» g is (at least) of order 1 and then g" is of order r. So:

where [Z"]g¥ is the r-th order tensor of gk.
» Many ways to build an error term T¢ ...

» For instance, T¢ = £ o g, where

k
gr(€) = | X TY O €|+ E0(Ti(e) O lel)

r=0

272 /2

Taylor Expansions

1D series of elementary functions

» Factorize out constant part (evaluation at point 0).

» Compute the n-th derivative in the Value-Error domain, which
yields:

> a value at 0.
» an error function.

» Examples:

exp(xo + x') = exp(xo) exp(x’)

DL (€) ~ el ,
log(xo + x") = log(xo) + Iog(l +3%)
Diog' (€) = (f + 1)l ()1

sin(xp + x’) = sin(xp) cos(x’) + cos(xp) sin(x")

DZ,(¢) = (~1)" sin(c)

atan(xp + x’) = atan(xg) + atan(HX =)

DL2(6) = (<2(r + DD (€)= r % (7 + 1) ¥ Dy (€))/(1 +)

24 / D

Taylor Expansions
Disciplined convolution

» Efficient product:

(XN T, Z)x (2S,.2")= 2 (X TixS,—j)Z"

reN reN reN ieN

» Convolution structure (h + b =...=nr +rn =r):
To | Thet | | Th
5/2 S/2,1 .. Sr2

» Column-wise tensor products give all additive contributions to
order r tensor.

» Adding elements (r — r+1):

7 T/l‘f T/l_,_]_‘f\ .. Tr1 k7 Tr1+1
(SLe1|[SL|Sh-1]---|Sn

5 /2D

Taylor Expansions

Solving PDE with Picard-Lindelof theorem

» For an equation in solved-form:
f(x) =f(0) + fexpr(h, f(h))dh
0
The following sequence of iterates:
90(x) = 0.6n12(x) = F(80)(x) = £(0) + | expr(h,on(h))
0

converges to a solution of the equation.

276 / D

Taylor Expansions

Solving PDE with Picard-Lindel6f theorem

» How to compute (a Taylor expansion of) lim ¢, ?
n—0o0

— We just interpret functional F in our Taylor algebra.

Even simpler?, the limit ¢ = F(¢s) is an ordinary recursive

(lazy) value.

» The polynomial expansion comes for free, no solving or
iteration is needed (just write down the solved-form equation).

» Mutual and multi-dimensional (causal) equations are also
supported.

v

2in Ocaml
27 /2D

Taylor Expansions

Solving PDE with Picard-Lindel6f theorem

>

How to compute (a Taylor expansion of) lim ¢, 7
n—0o0

— We just interpret functional F in our Taylor algebra.

Even simpler?, the limit ¢ = F(¢s) is an ordinary recursive
(lazy) value.

The polynomial expansion comes for free, no solving or
iteration is needed (just write down the solved-form equation).
Mutual and multi-dimensional (causal) equations are also
supported.

What for the error part 7

2in Ocaml

27 /2D

Taylor Expansions

Solving PDE with Picard-Lindel6f theorem

» For the error part, extra fixed point computation is needed.
» Suppose one wants to compute an error tensor part at order k.

k
» Assume ¢k (x) = Y TV Ox" + XO(T4(x) O x)
=0

r—

» Then ¢xi1 = F(¢k), by virtue of integration, has an order
k + 1 error term, T} ;.

» So we have a fixed point whenever, for a given x:
LT O XI") < ZOTLO X + Tia () O x|

29 /2D

Taylor Expansions

Solving PDE with Picard-Lindel6f theorem

» For the error part, extra fixed point computation is needed.
» Suppose one wants to compute an error tensor part at order k.

» Assume ¢y (x) = Z T/ Ox" + X0(Ti(x) ©xK)

» Then ¢p1 = ((Z)k) by virtue of integration, has an order
k + 1 error term, Tk+1.

» So we have a fixed point whenever, for a given x:
EO(T5(x) © [x|*) < EOTL O x| £ Thpn () © x|

» Stronger but more tractable component-wise constraint:
Ti() O XI“ < |TLO x|+ Ti1 (%) © x|

» The least such T{ may be computed component-wise, by
dichotomy for instance.

29 /2D

Conclusion

v

GADT and type-level arithmetics are a great help.

» Only numerical bugs unveiled (~6.5kLoc).

» How to get rid of proof terms ?

» Unfamiliar co-inductive error formulation, but more flexible.

» Hard work to tame complexity blow-ups.

20 /

Perspectives

» Complete PDE solving (error terms).
» More efforts toward efficiency (memory allocations).
» Certified floating-point errors.

20 / 0D

Perspectives

» Complete PDE solving (error terms).
» More efforts toward efficiency (memory allocations).

» Certified floating-point errors.
» Better error models such as intervals, zonotopes:

v + ¢(A) becomes v + Z Xiki(A) + p(A)
ie[0,N—1]

» Less space-wasting tensor scheme with co-tensors.
» Disciplined composition with Faa Di Bruno's formula:

d” n! - 1 Dx)\™
dxn flg(x)) = Z mi!mo! - m,! flms ")(g(x))H (g ()>

! i H

n
where > ixm; =n
i1
» Beyond monomial basis: Poisson basis, Hermite basis.

» Beyond natural exponents: Laurent series, Puiseux series.

20 / 0D

Perspectives

» Complete PDE solving (error terms).
» More efforts toward efficiency (memory allocations).

» Certified floating-point errors.
» Better error models such as intervals, zonotopes:

v + ¢(A) becomes v + Z Xiki(A) + p(A)
ie[0,N—1]

» Less space-wasting tensor scheme with co-tensors.
» Disciplined composition with Faa Di Bruno's formula:

d” n! - 1 Dx)\™
dxn flg(x)) = Z mi!mo! - m,! flms ")(g(x))H (g ()>

! i H

n
where > ixm; =n
i=1
» Beyond monomial basis: Poisson basis, Hermite basis.
» Beyond natural exponents: Laurent series, Puiseux series.

» Full correction proofs (algebraic and approximation properties).

20 / 0D

A small demo

Goddard's rocket equations:

rF =v
y . D(rvv)
Vo=—"h H—Zn—g(r)—i—C%
m = —bl|u|
where:

D(r,v) = Kp||v|[2e~kIrI=1) s the drag
g(r) = GW is the gravity

= is the thrust

b||u|| is the fuel consumption

21 / 0

Thank you

for your attention |

Any questions ?

	Context
	Taylor Expansions Building Blocks
	Values and Errors
	Symmetric Tensors
	Taylor Expansions

	Conclusion

