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Introduction and motivating examples

Problem statement

Digitalization and computer-based modeling and studies are crucial steps for any
system, concept or physical phenomena understanding.

Dynamical models play a pivotal role at many steps of the engineer’s work:
> system’s understanding through simulation
> system's improvement through optimisation

> system’s restitution through measurement and tests
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Introduction and motivating examples

Problem and proposed solution

Problem: numerical dynamical models are too complex and parameter dependent

Finite machine precision, computational burden and memory management:
> induces important time consumption
> generate inaccurate results

Actual numerical tools
> limit the use of class and complexity models

Solution: provide robust and efficient numerical tools to simplify dynamical models

The main objectives are to save time and improve quality, by

(T) Time: speeding up simulation time and reducing computation burden
(Q) Quality: enhancing simulation accuracy and memory management
and extend scope, by

(S) Scope: tailoring larger / more complex dynamical model class to standard tools

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (3/42)
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Introduction and motivating examples

Scope and considered mathematical dynamical models

Provided realisation or transfer function Provided complex-domain data
S:(E,A B,C,D) or H(s) {ow;, @4} or {si, H(s;)}
obtained from obtained from
> spatial meshing of PDE > experiments
> analytical resolution > numerical simulation

Bode diagram

Meromorphic function evaluation
+
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Introduction and motivating examples

Scope and considered mathematical dynamical models

Provided realisation or transfer function Provided complex-domain data
S:(E,A B,C,D) or H(s) {ow;, @4} or {si, H(s;)}

obtained from obtained from

> spatial meshing of PDE > experiments

> analytical resolution » numerical simulation

Ex(t) = Ax(t)+ Bu(t)e R" B, - y(wi) oy xnu

y(t) = Ox(t)+ Du(t)e R"v, u(w;)
H(Sl) — y(sl) c (cny XN,

(or an other realization structure) u(s;)

y(s) = H(s)u(s)e C™v
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Introduction and motivating examples

Scope and considered mathematical dynamical models

Provided realisation or transfer function Provided complex-domain data
S:(E,A B,C,D) or H(s) {ow;, @4} or {si, H(s;)}
obtained from obtained from
> spatial meshing of PDE > experiments
> analytical resolution » numerical simulation

Model approximation paradigm seeks for an approximation H (and S) which:
> is uniformly “close", i.e. given u, (H — H)u (or (H(s;) — H(s;))u) is “small" in
an appropriate sense,

> preserves properties, e.g. stability, passivity, subsystem interconnectivity etc.

» while procedure is numerically robust and stable, and is simple.
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Introduction and motivating examples

Scope and considered mathematical dynamical models * 2

Provided realisation or transfer function Provided complex-domain data
S:(E,A B,C,D) or H(s) {ow;, @4} or {si, H(s;)}
obtained from obtained from
> spatial meshing of PDE > experiments
> analytical resolution » numerical simulation

#1 Ha and Ho o-optimal H(s)=C(skE— A)1B

#2 Infinite dimensional Hz-optimal H(s) = C(sE - A)~'B

#3 Delay structured Hz-optimal ﬁ(s) _ Ao(s)é(sE—A)’léA,(s),
#4 Data-driven interpolation ﬁ(s) _ A(sE _ A)*IB

#5 TDS stability chart estimation A(H(s)) ~ A(ﬂ(s)),

1 % P. Vuillemin, "Frequency-limited model approximation of large-scale dynamical models", Ph.D. Onera,
ISAE, Toulouse University, Toulouse, France, November 2014.

2 % |. Pontes Duff, "Large-scale and infinite dimensional dynamical model approximation", Ph.D. Onera,
ISAE, Toulouse University, Toulouse, France, January 2017.
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Introduction and motivating examples

Some applications - #1 business jet aircraft 3

Provided realisation or transfer function
S:(E,A B,C,D) or H(s)
obtain H(s):
» ODE n =650 tor =16

> Frequency-limited Ho approx.

Gain (dB]

[ Origial model
oriented model rod:
80 Hy oriented model reduction

107 10°

10°
Frequency [Hz]

3 % P. Vuillemin, F. Demourant, J-M. Biannic and C. P-V, "Stability analysis of a set of uncertain large-scale
dynamical models with saturations: application to an aircraft system", in IEEE transactions on Control Systems
Technology.
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Introduction and motivating examples
Some applications - #2 Rhin river model *
«10Tmpulse response «10linpulse response
5
Provided realisation or transfer function .
4
S:(E,A B,C,D) or H(s) 5
obtain Hy(s, 7): g4 S
> PDE n = oo to r = {4, 6} EE {76 179l G0-amich)
-
> Ho delayed model )
1
1
0
0
0 5000 10000 0 5000 10000
Time (s) Time (s)
AL (s)e 2 EFAL)@ _ 3, (5)er1 () LtAz(s)e
Ge(s7 x) =
Bos(er (DL — er2(a)L)
Al(s)eM(S” - )\g(s)e’\Q(s)m
GS(S7 z) =
Bos(er1 ()L — egr2(s)L)

4 % I. Pontes Duff, C. P-V and C. Seren, "Ho-optimal model approximation by input / output-delay

structured reduced order models", in Systems & Control Letters.
Linear dynamical model approximation (7/42)
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Introduction and motivating examples

Some applications - #3 flow modeling (N&S equations) °

Provided realisation or transfer function
S:(E, A, B,C,D) or H(s)

obtain H(s, p) or Hy(s, p):
» DAE n = 650,000 to r = 18

» Parametric, delayed o approx.

10° Tmpulse response
B [—H(s) original model
H(s) IRKA r=6 [Gugercin et al., 2008]
|= Ha(s, 7)IO-dIRKA r=6 (7 = 0.00033166,

Shear stress
°

[ 0.2 04 0.6 08 1
Time [s] <10°

5 % C. P-V and D. Sipp, "Parametric reduced order dynamical model construction of a fluid flow control

problem”, IFAC LPVS, Grenoble, France, 2015.
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Introduction and motivating examples

Some applications - #4 ground vibration test 6

Provided frequency domain data
{wi, @i} or {si, H(ss)}

obtain H(s) or H(s):
> GVT models (i =1,..., N = 1000)

> Data-driven meromorphic approx.

Meromorphic function evaluation
+

5ok o &

&

B8 &

Frpency

6 % C. Meyer, J. Prodigue, G. Broux, O. Cantinaud and C. P-V, "Ground test for vibration control
demonstrator"”, MOVIC'16, Southampton, United Kingdom, 2016.
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Introduction and motivating examples

Some applications - #5 high speed network ’

Provided realisation or transfer function
S:(E,A B,C,D,7) or H(s, T)

with delays 7, obtain:

> Approximate functions
> The stability chart

#Unstable modes

Congestion high speed network system
x(t) = Aox(t)+A1x(t—71)+A2x(t—T1—T2)

with 71,72 € [0,1.5]s

7 % C. P-V, C. Seren, P. Vuillemin, A. Seuret, ..., "Paper | should I've written", in some Journal.
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Introduction and motivating examples

Today's talk

Results on finite order model approximation

Part 1 over frequency-limited range

Part 2 using input/output delay structured models

> and its application...
Part 1 ... in the aeronautics domain

Part 2 ... and in the hydro-electrical modeling and analysis

Team work
> P. Vuillemin [Onera]
> |. Pontes-Duff [Max Plank Institute]

» C. Seren [Onera]

Digital

Systems
http://mordigitalsystems.fr/
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Introduction and motivating examples

Problem formulation and settings

Let us consider H, a n, inputs, ny outputs linear dynamical system described by the
complex-valued function from u to y, of order n (n large or co)

H:C — C'vXnu, (1)
the model approximation problem consists in finding H of order r < n
H:C— CwXnu, (2)

that well reproduces the input-output behaviour of H.

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (12/42)
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Introduction and motivating examples

Problem formulation and settings

Let us consider H, a n, inputs, ny outputs linear dynamical system described by the
complex-valued function from u to y, of order n (n large or co)

. Mgy XNy
H:C — CvXnu,

1

the model approximation problem consists in finding H of order r < n

A :C— CXn,

()
that well reproduces the input-output behaviour of H. and equipped with a given
realization, e.g.

- )
o { 0]

(t)
t

)

AR(t) + Bu(t) or & : E
Cx

< Yo

Charles Poussot-Vassal [Oneral
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Introduction and motivating examples

Problem formulation and settings

Let us consider H, a n, inputs, ny outputs linear dynamical system described by the
complex-valued function from u to y, of order n (n large or co)

H:C — C'vXnu, (1)
the model approximation problem consists in finding H of order r < n
H:C— CvXmu, (2

that well reproduces the input-output behaviour of H. and equipped with a given
realization, e.g.

- )
o { 0]

(1) + Bu(t) Sd:{ Bi(t) = Ax()
9t = A

. "Well reproduce..."?
H is a "good" approximation of H if
for the same driving u(t), £(t) = y(t) — y(¢) is "smal

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (12/42)
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Introduction and motivating examples

Problem formulation and settings® 9

Ho model approximation

H:= arg min [IH — Gl|n, (4)
G € H2
rank(G) =r < n

Bode Diagram

Energy to an impulse input

=3, = —/ H(W)HT(W))

Note that: ||y () = 9(t)l|L.. < [[H — Hllp,[[u(®)]| L,

8 % S. Gugercin and A C. Antoulas and C A. Beattie, "Ho Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

9 % K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential
interpolation”, SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.
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Introduction and motivating examples

Problem formulation and settings 8

Input / output delays structured Hs model approximation
H, = arg min [IH — G||n, (4)

GeHo
rank(G) =r < n

Bode Diagram

Energy to an impulse input

=3, = —/ H(W)HT(W))

Note that: ||y () — 9()l|L.. < [[H — Hllp,[[u(®)l| L,

8 % I. Pontes Duff, C. P-V and C. Seren, "Ho-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Introduction and motivating examples

Problem formulation and settings9 10

Ha, model approximation

H:=arg min [1H — Gl3, (5)
G €eHo
rank(G) =r < n

Bode Diagram

Energy (over a finite frequency) to an impulse input

1 -
IHl3,,, = - tr (H(w)H” (w))dv
Q

10
Frequeney (rads)

9 % P. Vuillemin, C. P-V and D. Alazard, "A Spectral Expression for the Frequency-Limited Ho-norm",
Available as http://arxiv.org/abs/1211.1858, 2012.

10 % P. Vuillemin, C. P-V and D. Alazard, "Spectral expression for the Frequency-Limited Ho-norm of LT/
Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.
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Finite order frequency-limited model approximation

Context and problem description

4l DASSAULT

AV I AT/ ON

Business jet aircraft

> Load aspects (related to weight)

> Vibrations aspects (related to comfort)

Challenges

» Handle flexible models

> Limited frequency range

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (15/42)
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Finite order frequency-limited model approximation

Petrov-Galerkin approximation

> The state vector trajectories

x(t) =X (t)v1 + X2 (t)VQ +... (6)

> By setting x(t) ~ VX(¢t) and span (V) =V, the dynamical model becomes,

5. [ EVx(t) = AVX(t)+ Bu(t) +r(t)
S'{ yt) = CVfc(t)JrDllll(t) ™

The residual r(t) € R™ accounts for the fact that V%(¢) will not be an exact
solution to the dynamical equation.

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (16/42)
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Finite order frequency-limited model approximation

Petrov-Galerkin approximation

> The state vector trajectories

x(t) =X (t)v1 + X2 (t)VQ +... (6)

> By setting x(t) ~ VX(t) and span (V) =V, the dynamical model becomes,

s. [ EVX(t) = AVX(l)+ Bu(t) +r(t)
S'{ yt) = CVﬁ(t)JrD?l(t) )

The residual r(t) € R™ accounts for the fact that V%(¢) will not be an exact
solution to the dynamical equation.

> The residual 7(t) is then constrained to be orthogonal to a subspace W € R™*",
where span (W) =W, i.e.
WTrt)=0 (8)

Charles Poussot-Vassal [Onera Linear dynamical model approximation (16/42)
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Finite order frequency-limited model approximation

Petrov-Galerkin approximation

> The state vector trajectories

x(t) =X (t)v1 + X9 (t)VQ +... (6)

> By setting x(t) ~ VX(t) and span (V) =V, the dynamical model becomes,

O

_ { EVi(t) = AVX(t)+ Bu(t) +r(t) @)
: §(t) = CVi(t)+ Du(t)

The residual r(t) € R™ accounts for the fact that V%(¢) will not be an exact
solution to the dynamical equation.

> The residual 7(t) is then constrained to be orthogonal to a subspace W € R™*",
where span (W) =W, i.e.
wTrt)=0 (8)

A projection method consists then in seeking for an approximation %(t) of x(t), by
imposing the following two conditions:

%(t) € V and (Ev%((t) - (Avz@) + Bu(t))) 1w (9)

Charles Poussot-Vassal [Onera Linear dynamical model approximation (16/42)
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Finite order frequency-limited model approximation

Petrov-Galerkin approximation

By setting
%(t) € V and BVX(t) — (AVX(t) + Bu(t)) LW (10)

or equivalently
%(t) e Vand WT (Evéc(t) - (Avk() + Bu(t))) =0 (11)

One then obtains,

§. 4 WIEVX(t) = WTAVX(t) + W' Bu(t) +0 (12)
’ y(t) = CVZX(t)+ Du(t)
Moreover, the approximated full state vector can be reconstructed if needed as,
x(t) = V&(t) (13)

This is known as the Petrov-Galerkin projection framework

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (17/42)
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Finite order frequency-limited model approximation

Approximation by projection

Comments about V' and W

Let us consider the (oblique) projection,

s ) WTEVR@) = wWTAVR@E) + WT Bu(t)
o { 9B = CV&() + Du(t) (14)
%0 =WTxo e R" (15)

Lemma

Choosing two different bases VV/ and W’ that respectively span the same subspaces V
and W result in the same reconstructed solution x(t).

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (18/42)
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Finite order frequency-limited model approximation

Approximation by projection

Comments about V' and W

Let us consider the (oblique) projection,

s ) WTEVR@) = wWTAVR@E) + WT Bu(t)
o { 9B = CV&() + Du(t) (14)
%0 =WTxo e R" (15)

Lemma

Choosing two different bases VV/ and W’ that respectively span the same subspaces V
and W result in the same reconstructed solution x(t).

Thus, subspaces are relevant, not basis

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (18/42)
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Finite order frequency-limited model approximation

Approximation by projection

> A reduced order model is uniquely defined by its projector 11y 1 = vwT
» The projector 11y v is itself uniquely defined by the two subspaces

span (V) =V

span (W) =W (16)

> V and W belong to the Grassmann manifold G(r,n): known as the set of all
subspaces of dimension r in R"

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (19/42)
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Finite order frequency-limited model approximation

Approximation by projection

> A reduced order model is uniquely defined by its projector 11y 1 = vwT
» The projector 11y v is itself uniquely defined by the two subspaces

span (V) =V

span (W) =W (16)

> V and W belong to the Grassmann manifold G(r,n): known as the set of all
subspaces of dimension r in R"

Reduced Order Model < (V, W)
How to find V and W (criterion)?

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (19/42)
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Finite order frequency-limited model approximation

Standard methods

Truncation (mostly dense)

> Modal, {V, W} are eigenvectors subspaces
» Balanced, {V, W} come from Lyapunov and SVD subspaces
» Singular perturbation, {V, W} come from Lyapunov and SVD subspaces

> .

Interpolation (mostly sparse)

v/ Moment matching (quite general formulation)
\/ Rational (Padé, Markov, generalized), {V, W} are Krylov subspaces
v/ Multi-point (H2 optimal or not), {V, W} are generalized Krylov subspaces

Hybrid (mostly dense)
v/ Balanced / multi-point, {V, W} are generalized Krylov and SVD subspaces

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (20/42)
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Finite order frequency-limited model approximation

Moment matching problem

Given a LTI model, H can be expanded at o € C as

H(s)l, = Y mi(o)(s = o)’ (17)
1=0

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (21/42)
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Finite order frequency-limited model approximation

Moment matching problem

Moment matching problem
Given a LTI model, H can be expanded at o € C as

oo
H(s)l, = > mi(o)(s - o)’ (17)
1=0
The problem consists in finding a reduced-order model H with
o0
Hs)| =) ii(0)(s — o), (18)
1=0

such that,
ni(oc) =ni(oc) Viel, ..., r (19)

Numerically ill-conditioned to explicitly matching them
Use Krylov subspaces

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (21/42)
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Finite order frequency-limited model approximation

Implicit moment matching and Krylov subspace

Definition: Krylov subspace /C,.

Given A € R™*"™ and v € R", the r-th order Krylov subspace, denoted K, (A, V) is
defined as

Kr(A,v) := span (v, Av, ..., Ar_lv) (20)
Krylov subspaces are “everywhere” in linear algebra:
» solution of linear equations Ax = b,
> eigenvalue computation,
> approximate solutions of Lyapunov equations,

» and model reduction. ..

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (22/42)
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Finite order frequency-limited model approximation

Implicit moment matching and Krylov subspace

Definition: Krylov subspace /C,.

Given A € R™*"™ and v € R", the r-th order Krylov subspace, denoted K, (A, V) is
defined as
Kr(A,v) := span (v, Av, ..., Ar_lv) (20)

Krylov subspaces are “everywhere” in linear algebra:
» solution of linear equations Ax = b,
> eigenvalue computation,
> approximate solutions of Lyapunov equations,
> and model reduction. . .
For moment matching, we are interested in :
> Kr (A, B): to match at o = oo,
> Kr (A_l,B): to match at o = 0,
> K ((Ufn - A)*1 ,B): for matching at o € C,

> or equivalently: /C (AT,CT), etc.

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (22/42)
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Finite order frequency-limited model approximation

Implicit moment matching and Krylov subspace

Reminder: Petrov-Galerkin (oblique) projection
Let V, W € R™*X" be such that WTV = I,.,

{50

Ax(t) + Bu(t) N { wTEV.(t) wTAV&(t) + W' Bu(t)
Cx(t) + Du(t) CVR(t) + Du(t)

(21)

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (23/42)
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Finite order frequency-limited model approximation

Implicit moment matching and Krylov subspace

Reminder: Petrov-Galerkin (oblique) projection
Let V, W € R™*X" be such that WTV = I,.,

{E)‘c(t) Ax(t) + Bu(t) N {W'TEV;c(
y (%)

t)
Ox(t) + Du(t) ()
Theorem: Two-sided moment matching
Let us consider a n-th order SISO LTI dynamical model S : (A, B,C, D, E) and o € C
s.t. oF — Ais full rank. If V;W € C"*" are full column rank matrices s.t.

wTAV(t) + WP Bu(t)
CVX(t) + Du(t)

<&

(21)

ICT((O'EfA)fl,(UEfA)le) c vy span (V)
Kr((eBE-A)"T,(cE-A4)~TcT) € W = span(W)

(22)
then, the 2r first moments of the reduced-order model H, obtained by projection,
matches the 2r first moments of H at o, i.e.

ni(o) =ni(o), i=1,...,2r (23)

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (23/42)
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Finite order frequency-limited model approximation

One-sided Krylov algorithm in oo, 0 and o

Require: A € R"*"™, B € R"*"u, r e N

1. Construct span(V) = K,.(A, B)

2: Apply projectors V and W =V {bi-orthogonality}
Ensure: V,W € R"*" and WTV = I,

Require: A~ ¢ R"*" B € R"*X"u, r ¢ N

1: Construct span(V) = K, (A1, B)

2: Apply projectors V and W =V {bi-orthogonality}
Ensure: V,W € R"*" and WTV =1,

Require: (oI, — A)~! € R"*"?, B € R"X"u, r € N
1. Construct span(V) = K:’,»((O'I”, — A, B)
2: Apply projectors V and W =V {bi-orthogonality}
Ensure: V,W € C"*" and WTV = I,

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (24/42)
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One-sided Krylov algorithm in co, 0 and o

One-sided Krylov algorithm in oo, 0 and o

Bode magnitude, r =5

Magnitude (¢8)

Bode magnitude error, r =5

Magnitude (48)

-100

107 10 3
Frequency (radis)

Eigenvalues, 1= 5

10° 10° 107 10 10
Frequency (radls)

ViV r=s
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One-sided Krylov algorithm in co, 0 and o

One-sided Krylov algorithm in oo, 0 and o

Bode magnitude, r = 10 Bode magnitude error, r = 10
so
o
g S o
5 Y
) H
150
-0
107 107 107" 10" 10* 10° 10 107 107" 107" 10° 10" 10" 10
Frequency (radls) Frequency (rade)
.
Eigenvalues, r = 10 VIV, r=10
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One-sided Krylov algorithm in co, 0 and o

One-sided Krylov algorithm in oo, 0 and o

Bode magnitude, r = 30

Bode magnitude error, r = 30

9
100
H £ 200
H H
~a0o
e
107 107 107" 10" 10* 10° 10 107 107" 107" 10° 10" 10" 10
Frequendy (rad) Frequendy (rads)
Ty o=
Eigenvalues, r = 30 VIV, r=30
. 0
X e
90| 3
A -
80) 5
X -4
o i
f .
a0l ¢ .
5o e
2o .
20
L
20
o o
=500 400 300 200 ~100 B 10 15 20 25 e
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Finite order frequency-limited model approximation

Two-sided Krylov algorithm

Algorithm: Two-sided Krylov Algorithm (KA2)

Require: A € R"*" B e R"*"u, C e R"w*" reN,oceC
1: Construct span(V) = ICT((aIn - AL B)
2. Construct span(W) = K, ((aIn — A)_T, CT)
3 Set W« W(WTV)~T {to ensure WTV = I,.}

4: Apply projectors V and W
Ensure: V,W € C"*" and WTV = I,

1 % Y. Saad, "lterative methods for sparse linear systems", SIAM, 2003.
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Finite order frequency-limited model approximation

Two-sided Krylov algorithm

Algorithm: Two-sided Krylov Algorithm (KA2)
Require: A € R"*" B e R"*"u, C e R"w*" reN,oceC
1. Construct span(V) = ICT((aIn - A7, B)
2. Construct span(W) = K, ((aIn — A)_T, CT)
3 Set W« W(WTV)~T {to ensure WTV = I,.}

4: Apply projectors V and W
Ensure: V,W € C"*" and WTV = I,

Matches twice more moments thus enhancing the approximation

Instead of 2 Arnoldi procedures, on can use the Lanczos Algorithm“,
> it directly builds V' and W with wTv = 1I,,
> it is numerically cheaper,

> but breakdowns can occur.

1 % Y. Saad, "lterative methods for sparse linear systems", SIAM, 2003.
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Finite order frequency-limited model approximation

Generalized Krylov and multi-point moment matching

By considering the union of several Krylov subspaces, i.e.

Generalized Krylov subspaces.

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (27/42)
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Finite order frequency-limited model approximation

Generalized Krylov and multi-point moment matching

By considering the union of several Krylov subspaces, i.e.

Generalized Krylov subspaces.

Theorem: Two-sided moment matching at several points

Let us consider a n-th order SISO LTI dynamical model S : (A, B,C,D, E) and
{o1,...,0n,} € C" s.t. Vi, (0;E — A) is full rank. If V,;W € C™*" are full column
rank matrices s.t.

Lj Kri ((0kE — A)7', (0x E — A)'B)

C VvV = span(V)
nkg:l (24)
U & ((0xE = 47T, (0xE—4)"TCT) C W = span(W)
k=1

then, the 2rj; first moments of the reduced-order model I:I obtained by projection,
matches the 27 first moments of H at each oy, i.e. fork=1,...,n,,

ni(gk):ﬁi(ak), iZO,...,2Tk—1. (25)

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (27/42)
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Finite order frequency-limited model approximation

Generalized Krylov and multi-point moment matching

Theorem: First-order optimality conditions for the s problem

Let H be a r-th order asymptotically stable model with semi-simple poles only. If His
solution of the 2 approximation problem, then

eTH(-X) = efH((-A\)
H(-X\)b; = H(-A\)b; (26)
eTH/(-X\;)b; = &lA/(-\)b;

where A; and {&;,b;} are the poles and associated residues of H(s).

12 % P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H 2-optimal model reduction of MIMO systems",
Applied Mathematics Letters, vol. 21, no. 12, pp. 53-62, December 2008.
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Finite order frequency-limited model approximation

Generalized Krylov and multi-point moment matching

Theorem: First-order optimality conditions for the s problem

Let H be a 7-th order asymptotically stable model with semi-simple poles only. If His
solution of the 2 approximation problem, then

eTH(-X) = efH((-A\)
H(-X\)b; = H(-A\)b; (26)
eTH/(-X\;)b; = &lA/(-\)b;

where A; and {&;,b;} are the poles and associated residues of H(s).

> the reduced-order model is a bi-tangential Hermite interpolant of the large-scale
model at the opposite of its poles,

> these conditions can be obtained from the state-space formulation (see 1?)

12 % P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "Hs-optimal model reduction of MIMO systems",
Applied Mathematics Letters, vol. 21, no. 12, pp. 53-62, December 2008.
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Finite order frequency-limited model approximation

Generalized Krylov and multi-point moment matching

> The optimality conditions can be viewed as a set of coupled equations,

(j\z,éz,f)l) = Fy (A,B,é,ﬁ,ﬁ') and (A,B,é,ﬁ,EA') = GQ (5\1,61,1;)1) .

(27)
which admit a fixed point at every stationary point of 7.
—this suggests an iterative procedure
(OYRN ¥ )k+1 F (A,B,C,D, E)k+1 . (4,B,C,D, E)k+1 =Gs (A&, )k
(28)
Interpolatory approach (MIMO IRKA or ITIA):

> initially proposed for SISO models as Iterative Rational Krylov Algorithm in 13,

> the step ()\Z,c“b )k+1 = Fy (A,B,C’,ﬁ,@)k+1 is done by solving a

small-scale eigenvalue problem,
—assumes that A is diagonalisable

> the step (A,E, C, D, E) ol = Ga (:\i,éi,fyi)k is done by tangential

interpolation through Krylov subspaces (projection).

13 % S. Gugercin, A.C. Antoulas and C. Beattie, "A rational Krylov iteration for optimal Ho model

reduction”, Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, 2006.
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Finite order frequency-limited model approximation

And now a frequency-limited version'*

Mixing SVD and interpolatory methods

> V is constructed by Lyapunov and SVD... and especially, frequency-limited
gramians
» IV is constructed by interpolatory method

> follow the iterative scheme

Input dta uft)

[—Original model

10? 10° 10%
Frequency [Hz]

14 % P. Vuillemin et al., "Paper on going :)", eventually in a Journal.
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Finite order delay structured model approximation

P Context and problem description'®
L -
-~ EDF

Hydraulics green electricity (~ 10%)

> Dams

» Run-of-the-river

Run-of-the-river (=~ 5%)
> In France, provides 3.6GW

> Rely open-channel hydraulic systems

> Need for analysis and control

58429

15http ://alsace.edf.com/actions/fonctionnement-des-centrales-hydroelectriques-sur-le-rhin/
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Finite order delay structured model approximation

Modelling assumptions

Context and problem description

> No discharge, no infiltration, one dimensional flow, small bed slope, small stream

line, negligible vertical acceleration

> Input u: boundary conditions ge(t) and gs(t)

> Output y: water depth

> t,x are the time and spatial variables

Uniform cross section

From equations
H(s,z) € Ct*2 (29)

an irrational transfer function at a given po-
sition * = T, .

Charles Poussot-Vassal [Oneral

Non uniform cross section
From a dedicated software
{wi, ®i(z)} € (C,C?) (30)

an input/output transfer data collection at
a given position T = Tm.
(not in this presentation)

Linear dynamical model approximation (32/42)
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Finite order delay structured model approximation

Context and problem description16

05 00 _

o os) Ok (31)
T AR 12) 4 0s %0~ gs(I—J

o + o +g o g5( )s

x € [0 ; L] is the spatial variable, H(z,t) the water depth, S(xz,t) the wetted area,
Q(z,t) the discharge...

16 % V. Dalmas, G. Robert, C. Poussot-Vassal, |I. Pontes Duff and C. Seren, "From infinite dimensional
modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity”, in
Proceedings of the 15th European Control Conference (ECC'16), Aalborg, Denmark, July, 2016.
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Finite order delay structured model approximation

Context and problem description'®

as aQ

+ — =0
9Q (QQ/S)
— S— = gS(UI-1J),
o " T P 98I = J)
x € [0 ; L] is the spatial variable, H(z,t) the water depth, S(xz,t) the wetted area,

Q(z,t) the discharge...

(31)

1 Apply linearisation at § = (Hp, Qo), which are both z,, dependent

2 Apply Laplace around equilibrium

3 Find solutions of h(s,zm), q(s,zm) & identify coefficient (boundary conditions)
4 Full order Loewner interpolation of the filtered function

5 Approximation with and without delay

6 Back to original problem

16 % V. Dalmas, G. Robert, C. Poussot-Vassal, |I. Pontes Duff and C. Seren, "From infinite dimensional
modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in
Proceedings of the 15th European Control Conference (ECC'16), Aalborg, Denmark, July, 2016.
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Finite order delay structured model approximation

Context and problem description

h(s,2m,0) = Ge(s,Tm,0)qe(s) — Gs(s,Tm,0)gs(s) (32)
A A2(8)L+A1(s)zm _ A1 () L+XA2(s)zm
Ge(s,2m,0) = 1(s)e i A2(s)e
Bos(er ()L — era(s)L) (33)
A (s)Tm _ A2(8)Tm
Gu(s.0m,8) — A1(s)e Az(s)e

Bos(ekl(s)L _ e)\g(s)L)

» Irrational transfer function

> Infinite order equation

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (34/42)
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Finite order delay structured model approximation

Context and problem description

h(s,2m,0) = Ge(s,Tm,0)qe(s) — Gs(s,Tm,0)gs(s) (32)
3 3
-48
50 50 2 2
52
-55 1 1
K
? 0 0
-60 g
B El
60
65
-62 2 2
64
70 -3 3
10 102 10" 102 10 10°? 10% 102

Frequency [Hz] Frequency [Hz]

» Delay behaviour is obvious

» Not Ho function

Charles Poussot-Vassal [Oneral

Frequency [Hz]

Frequency [Hz|
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Finite order delay structured model approximation

Delay structured ROM

Model-based (uniform) Data-based (non uniform)
From equations From a dedicated software

H(s, z,,) € C1X2 (33) {wi, ®;(zm)} € (C, CH*2) (34)
an irrational transfer function. an input/output transfer data collection.

. the objective is to approximate it by

x(@t) =

(3t ~ (9)
9 = u )

> A € R"XT, B € R"%nu, C‘« € R™ X" and ﬁ € Ry Xnu
> which are linearly dependent on 4,

> and 7(J) € R is an input delay vector.

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (35/42)
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Finite order delay structured model approximation

Delay structured ROM

Model-based (uniform) Data-based (non uniform)
From equations From a dedicated software

H(s, zm) € C'*2 (33) {w;i, ®i(xm)} € (C,CH*2) (34)
an irrational transfer function. an input/output transfer data collection.

... from the open-channel example
h(s,@,0) = Ge(s, ®,0)qe(s) — Ga(s, z,0)qs(s) (35)

one seeks the input delayed r-th order rational function

h(s,6) = Ge(s,0)ge(s) — Gs(s,0)gs(s)
Ge(zm,s,(S) = Re(s’é)e_‘re(d)s (36)
Gs(:cm,s,é) = Rs(s,é)e_“'(‘s)5

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (35/42)
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Finite order delay structured model approximation

Delay structured ROM - an approach when the delay is known

If delays are a-priori known functions, approximation can be done on the shifted
function

B(s,mm, 0) = Ge(s, zm, 6)e+76(5)sqe(s) — Gs(8,Tm, 6)6'*'7'-“(5)SqS (s) (37)

> then apply Loewner
> and go back to h(s,z,d)

> apply TF-IRKA'
» and go back to h(s,z,d)

The Loewner approach is preferred for practical reasons inl8.
However, is the fixed delays the best idea? What if you don't a priori know them?

1 % C.A. Beattie, and S. Gugercin, "Realization-independent H o -approximation”, in ProceedingsProceedings
of the 51st IEEE CDC, USA, December, 2012.

18 % V. Dalmas, G. Robert, C. Poussot-Vassal, |I. Pontes Duff and C. Seren, "From infinite dimensional
modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity”, in
Proceedings of the 15th ECC, Denmark, July, 2016.
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Finite order delay structured model approximation

Delay structured ROM - the 1/0 delay structured alternative *°

Input / output delays structured Hy model approximation
H, :=arg min [IH — G|, (38)
GcHeo
rank(G) =r < n

A A

where fId = AUHAi.

Ho interpolatory conditions in the delay free case no longer apply
> due to the exponential terms in the transfer function...

> ...which implies a non symmetrical inner product (next slide)
> dedicated conditions need to be derived

19 % I. Pontes Duff, C. P-V and C. Seren, "Ho-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.

Charles Poussot-Vassal [Oneral
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Finite order delay structured model approximation

Delay structured ROM - H-inner product issue

r =2 H(s) = o5 = %5 (u=—1land A = -2)

G(s) = SJlr

> Delay-free case?® (Lemma 2.4):

(G Hypy =yH(—p) =p—2 =L =3 Y _a(h) = ®E, G,
—p— A “A—n

Ho-inner product can be computed using pole-residues decomposition of G or H

> Delay dependent case?! :

20 % S. Gugercin and A C. Antoulas and C A. Beattie, "Ho Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.
21 % I. Pontes Duff, C. P-V and C. Seren, "Ho-optimal model approximation by input / output-delay

structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation

Delay structured ROM - H-inner product issue

Gs)= o7 =5, H) = 75 =~ (u=—land A = -2)

> Delay-free case?® (Lemma 2.4):
_ — ¥ 3G (3 —
(G, H)p, = YH(—p) =9 =¢——— =0G(-A) = (H,G)#n,
o 3 “A—n

Ha-inner product can be computed using pole-residues decomposition of G or H

> Delay dependent case?! :
Let H(s) < H(s)e *.
Let move the delay as (He™*, G)y, = (H, Ge®)y,, one obtains :

(G,He *)yy, = ¢H(—p)e! = %e‘%ﬁ%ez = $G(~Ne ™ = (H,Ge?)yy,

Symmetric Ha-inner product does not provide the same result any more.

20 % S. Gugercin and A C. Antoulas and C A. Beattie, "Ho Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.
21 % I. Pontes Duff, C. P-V and C. Seren, "Ho-optimal model approximation by input / output-delay

structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation

Delay structured ROM - H-inner product issue

Gs)= o7 =5, H) = 75 =~ (u=—land A = -2)

> Delay-free case?® (Lemma 2.4):

(G Hypy =yH(—p) =p—2 =L =3 Y _a(h) = ®E, G,
= A “A—n

Ha-inner product can be computed using pole-residues decomposition of G or H
> Delay dependent case?! :
Now using the Ha-inner product between He™® and G using the extended

formula:

<G7 He_S>H2 = wH(fﬂ)e# =

Which modifies the optimality conditions

20 % S. Gugercin and A C. Antoulas and C A. Beattie, "Ho Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

21 % I. Pontes Duff, C. P-V and C. Seren, "Ho-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation

Delay structured ROM - SISO 1/0 delay ROM approximation 7 optimality conditions

N n ~
b A Pk o —
G(s) = and H(s) = ., and H; = He 7%
(s) Zs_uj (s) st a
Jj=1 k=1
Theorem: SISO case
Interpolatory conditions on G
H(-Xg) = G(=Xp), H' (=) = G/(=Ap), (39)
Delay conditions
n T (z)
b k Thy —
Zujw] Z— eTHi = 0. (40)
j=1 P A
forallk=1...7,l=1...ny and m =1...ny where G(s) is given by
~ ¥
G(s) = Z J_e7Hi (pole / residue decomposition needed). (41)
Pl

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (39/42)
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Finite order delay structured model approximation
Delay structured ROM (delay structured 7>, approximate)
_1p»  Impulse response _1o" Impulse response

1

it

1,0 8 (IR
B0 = 12 (IR

KA)

9 1700] (10-dIRKA)|

-
o 2000

» Rational model obtained by Loewner filtered

4000 6000
Time (s)

8000 10000

0 2000 4000 6000 8000 10000

Time (s)

Errors

> 10-dIRKA (r=4)
4.34672 x 10~15

> IRKA (r=4):

6.43008 x 10~15

> IRKA (r=8):

4.06717 x 10—15

> IRKA (r=12):

3.76871 x 10~15

» Rational ROM, r = 4 filtered (with and without input delay structure)

Charles Poussot-Vassal [Oneral
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Epilogue and perspectives

What to keep in mind?

Model approximation...

> plays a pivotal role in many industrial and applicative contexts | =

> interesting tool for analysis, optimization... i

MOR Toolbox...

> is tailored to a large family of representation

> ... from input output data

» ... from irrational transfer functions
» ... from rational functions or a set of ODE

» Has been applied in different industrial contexts

Digital
Systems
http://mordigitalsystems.fr/

Charles Poussot-Vassal [Oneral Linear dynamical model approximation (41/42)
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Linear dynamical model approximation

and its applications

ONERA

THE FRENCH AEROSPACE LAB

Charles Poussot-Vassal

May 2018
Feanicses Workshop

Digital
Systems

http://mordigitalsystems.fr/
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