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Introduction and motivating examples
Problem statement

Digitalization and computer-based modeling and studies are crucial steps for any
system, concept or physical phenomena understanding.

Dynamical models play a pivotal role at many steps of the engineer’s work:
I system’s understanding through simulation
I system’s improvement through optimisation
I system’s restitution through measurement and tests
I ...

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (2/42)



Introduction and motivating examples Part 1 - Finite order FL-MOR Part 2 - Finite order IOD-ROM Conclusion

Introduction and motivating examples
Problem and proposed solution

Problem: numerical dynamical models are too complex and parameter dependent

Finite machine precision, computational burden and memory management:
I induces important time consumption
I generate inaccurate results

Actual numerical tools
I limit the use of class and complexity models

Solution: provide robust and efficient numerical tools to simplify dynamical models

The main objectives are to save time and improve quality, by
(T) Time: speeding up simulation time and reducing computation burden
(Q) Quality: enhancing simulation accuracy and memory management
and extend scope, by
(S) Scope: tailoring larger / more complex dynamical model class to standard tools
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Introduction and motivating examples
Scope and considered mathematical dynamical models

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtained from
I spatial meshing of PDE
I analytical resolution
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MORE toolbox (20 states, obtained in 1h20)
Original model (678735 states)
Optimal interpolation points

Provided complex-domain data

{ıωi,Φi} or {si,H(si)}

obtained from
I experiments
I numerical simulation
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Introduction and motivating examples
Scope and considered mathematical dynamical models

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtained from
I spatial meshing of PDE
I analytical resolution

Eẋ(t) = Ax(t) +Bu(t)∈ Rn
y(t) = Cx(t) +Du(t)∈ Rny ,

... (or an other realization structure)

y(s) = H(s)u(s)∈ Cny

Provided complex-domain data

{ıωi,Φi} or {si,H(si)}

obtained from
I experiments
I numerical simulation

Φi =
y(ıωi)
u(ıωi)

∈ Cny×nu ,

H(si) =
y(si)
u(si)

∈ Cny×nu
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Introduction and motivating examples
Scope and considered mathematical dynamical models

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtained from
I spatial meshing of PDE
I analytical resolution

Provided complex-domain data

{ıωi,Φi} or {si,H(si)}

obtained from
I experiments
I numerical simulation

Model approximation paradigm seeks for an approximation Ĥ (and Ŝ) which:
I is uniformly “close", i.e. given u, (H− Ĥ)u (or (H(si)− Ĥ(si))u) is “small" in

an appropriate sense,
I preserves properties, e.g. stability, passivity, subsystem interconnectivity etc.
I while procedure is numerically robust and stable, and is simple.
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Introduction and motivating examples
Scope and considered mathematical dynamical models 1 2

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtained from
I spatial meshing of PDE
I analytical resolution

Provided complex-domain data

{ıωi,Φi} or {si,H(si)}

obtained from
I experiments
I numerical simulation

#1 H2 and H2,Ω-optimal
#2 Infinite dimensional H2-optimal
#3 Delay structured H2-optimal
#4 Data-driven interpolation
#5 TDS stability chart estimation

Ĥ(s) = Ĉ(sÊ − Â)−1B̂

Ĥ(s) = Ĉ(sÊ − Â)−1B̂

Ĥ(s) = ∆̂o(s)Ĉ(sÊ−Â)−1B̂∆̂i(s),
Ĥ(s) = Ĉ(sÊ − Â)−1B̂

Λ(H(s)) ≈ Λ(Ĥ(s)),

1 P. Vuillemin, "Frequency-limited model approximation of large-scale dynamical models", Ph.D. Onera,
ISAE, Toulouse University, Toulouse, France, November 2014.

2 I. Pontes Duff, "Large-scale and infinite dimensional dynamical model approximation", Ph.D. Onera,
ISAE, Toulouse University, Toulouse, France, January 2017.
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Introduction and motivating examples
Some applications - #1 business jet aircraft 3

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtain Ĥ(s):
I ODE n = 650 to r = 16
I Frequency-limited H2 approx.

3 P. Vuillemin, F. Demourant, J-M. Biannic and C. P-V, "Stability analysis of a set of uncertain large-scale
dynamical models with saturations: application to an aircraft system", in IEEE transactions on Control Systems
Technology.
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Introduction and motivating examples
Some applications - #2 Rhin river model 4

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtain Ĥd(s, τ):
I PDE n =∞ to r = {4, 6}
I H2 delayed model

4 I. Pontes Duff, C. P-V and C. Seren, "H2-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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G, n = 102

Ĥ, r = 4, = = [ 634.2 1632] (IO-dIRKA)

Ĥ, r = 6, = = [ 676.3 1579] (IO-dIRKA)

Ge(s, x) =
λ1(s)eλ2(s)L+λ1(s)x − λ2(s)eλ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

Gs(s, x) =
λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

B0s(eλ1(s)L − eλ2(s)L)
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Introduction and motivating examples
Some applications - #3 flow modeling (N&S equations) 5

Provided realisation or transfer function

S : (E,A,B,C,D) or H(s)

obtain Ĥ(s, p) or Ĥd(s, p):
I DAE n = 650, 000 to r = 18
I Parametric, delayed H2 approx.

5 C. P-V and D. Sipp, "Parametric reduced order dynamical model construction of a fluid flow control
problem", IFAC LPVS, Grenoble, France, 2015.
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Introduction and motivating examples
Some applications - #4 ground vibration test 6

Provided frequency domain data

{ıωi,Φi} or {si,H(si)}

obtain Ĥ(s) or Ĥ(s):
I GVT models (i = 1, . . . , N ≈ 1000)
I Data-driven meromorphic approx.

6 C. Meyer, J. Prodigue, G. Broux, O. Cantinaud and C. P-V, "Ground test for vibration control
demonstrator", MOVIC’16, Southampton, United Kingdom, 2016.
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Introduction and motivating examples
Some applications - #5 high speed network 7

Provided realisation or transfer function

S : (E,A,B,C,D, τ) or H(s, τ)

with delays τ , obtain:
I Approximate functions
I The stability chart

7 C. P-V, C. Seren, P. Vuillemin, A. Seuret, ..., "Paper I should I’ve written", in some Journal.
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Introduction and motivating examples
Today’s talk

Results on finite order model approximation
Part 1 over frequency-limited range
Part 2 using input/output delay structured models

I and its application...
Part 1 ... in the aeronautics domain
Part 2 ... and in the hydro-electrical modeling and analysis

Team work
I P. Vuillemin [Onera]
I I. Pontes-Duff [Max Plank Institute]
I C. Seren [Onera]
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Introduction and motivating examples
Problem formulation and settings

Let us consider H, a nu inputs, ny outputs linear dynamical system described by the
complex-valued function from u to y, of order n (n large or ∞)

H : C→ Cny×nu , (1)

the model approximation problem consists in finding Ĥ of order r � n

Ĥ : C→ Cny×nu , (2)

that well reproduces the input-output behaviour of H.
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Introduction and motivating examples
Problem formulation and settings

Let us consider H, a nu inputs, ny outputs linear dynamical system described by the
complex-valued function from u to y, of order n (n large or ∞)

H : C→ Cny×nu , (1)

the model approximation problem consists in finding Ĥ of order r � n

Ĥ : C→ Cny×nu , (2)

that well reproduces the input-output behaviour of H. and equipped with a given
realization, e.g.

Ŝ :
{

Ê ˙̂x(t) = Âx̂(t) + B̂u(t)
ŷ(t) = Ĉx̂(t)

or Ŝd :
{

Ê ˙̂x(t) = Âx̂(t) + B̂∆̂i(u(t))
ŷ(t) = ∆̂o(Ĉx̂(t))

(3)
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Introduction and motivating examples
Problem formulation and settings

Let us consider H, a nu inputs, ny outputs linear dynamical system described by the
complex-valued function from u to y, of order n (n large or ∞)

H : C→ Cny×nu , (1)

the model approximation problem consists in finding Ĥ of order r � n

Ĥ : C→ Cny×nu , (2)

that well reproduces the input-output behaviour of H. and equipped with a given
realization, e.g.

Ŝ :
{

Ê ˙̂x(t) = Âx̂(t) + B̂u(t)
ŷ(t) = Ĉx̂(t)

or Ŝd :
{

Ê ˙̂x(t) = Âx̂(t) + B̂∆̂i(u(t))
ŷ(t) = ∆̂o(Ĉx̂(t))

(3)

"Well reproduce..."?
Ĥ is a "good" approximation of H if

for the same driving u(t), E(t) = y(t)− ŷ(t) is "small"

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (12/42)
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Introduction and motivating examples
Problem formulation and settings8 9

H2 model approximation

Ĥ := arg min
G ∈ H2

rank(G) = r � n

||H−G||H2 (4)
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8 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

9 K. A. Gallivan, A. Vanderope, and P. Van-Dooren, "Model reduction of MIMO systems via tangential
interpolation", SIAM Journal of Matrix Analysis and Application, vol. 26(2), February 2004, pp. 328-349.

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (13/42)

Energy to an impulse input

||H||2H2
:=

1
2π

∫ ∞
−∞

tr
(
H(ıν)HT (ıν)

)
dν

Note that: ||y(t)− ŷ(t)||L∞ ≤ ||H− Ĥ||H2 ||u(t)||L2
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Introduction and motivating examples
Problem formulation and settings 8

Input / output delays structured H2 model approximation

Ĥd := arg min
G ∈ H∞

rank(G) = r � n

||H−G||H2 (4)

10
−1

10
0

10
1

−40

−30

−20

−10

0

10

20

30

M
ag

n
it

u
d

e 
(d

B
)

Bode Diagram

Frequency  (rad/s)

8 I. Pontes Duff, C. P-V and C. Seren, "H2-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Introduction and motivating examples
Problem formulation and settings9 10

H2,Ω model approximation

Ĥ := arg min
G ∈ H∞

rank(G) = r � n

||H−G||H2,Ω (5)
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9 P. Vuillemin, C. P-V and D. Alazard, "A Spectral Expression for the Frequency-Limited H2-norm",
Available as http://arxiv.org/abs/1211.1858, 2012.

10 P. Vuillemin, C. P-V and D. Alazard, "Spectral expression for the Frequency-Limited H2-norm of LTI
Dynamical Systems with High Order Poles", European Control Conference, 2014, pp. 55-60.
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Energy (over a finite frequency) to an impulse input

||H||2H2,Ω
:=

1
π

∫
Ω

tr
(
H(ıν)HT (ıν)

)
dν
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Finite order frequency-limited model approximation
Context and problem description

Business jet aircraft
I Load aspects (related to weight)
I Vibrations aspects (related to comfort)

Challenges
I Handle flexible models
I Limited frequency range
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Finite order frequency-limited model approximation
Petrov-Galerkin approximation

I The state vector trajectories

x(t) = x̂1(t)v1 + x̂2(t)v2 + . . . (6)

I By setting x(t) ≈ V x̂(t) and span (V ) = V, the dynamical model becomes,

Ŝ :
{

EV ẋ(t) = AV x̂(t) +Bu(t) + r(t)
ŷ(t) = CV x̂(t) +Du(t) (7)

The residual r(t) ∈ Rn accounts for the fact that V x̂(t) will not be an exact
solution to the dynamical equation.

I The residual r(t) is then constrained to be orthogonal to a subspace W ∈ Rn×r,
where span (W ) =W, i.e.:

WT r(t) = 0 (8)

A projection method consists then in seeking for an approximation x̂(t) of x(t), by
imposing the following two conditions:

x̂(t) ∈ V and
(
EV ˙̂x(t)−

(
AV x̂(t) +Bu(t)

))
⊥ W (9)

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (16/42)
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Finite order frequency-limited model approximation
Petrov-Galerkin approximation

By setting
x̂(t) ∈ V and EV ˙̂x(t)−

(
AV x̂(t) +Bu(t)

)
⊥ W (10)

or equivalently

x̂(t) ∈ V and WT
(
EV ˙̂x(t)−

(
AV x̂(t) +Bu(t)

))
= 0 (11)

One then obtains,

Ŝ :
{

WTEV ˙̂x(t) = WTAV x̂(t) +WTBu(t) + 0
ŷ(t) = CV x̂(t) +Du(t) (12)

Moreover, the approximated full state vector can be reconstructed if needed as,

x(t) ≈ V x̂(t) (13)

This is known as the Petrov-Galerkin projection framework

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (17/42)
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Finite order frequency-limited model approximation
Approximation by projection

Comments about V and W
Let us consider the (oblique) projection,

Ŝ :
{

WTEV ˙̂x(t) = WTAV x̂(t) +WTBu(t)
ŷ(t) = CV x̂(t) +Du(t) (14)

x̂0 = WTx0 ∈ Rr (15)

Lemma
Choosing two different bases V ′ and W ′ that respectively span the same subspaces V
and W result in the same reconstructed solution x(t).

Thus, subspaces are relevant, not basis

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (18/42)
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Finite order frequency-limited model approximation
Approximation by projection

I A reduced order model is uniquely defined by its projector ΠV,W = VWT

I The projector ΠV,W is itself uniquely defined by the two subspaces

span (V ) = V
span (W ) =W (16)

I V and W belong to the Grassmann manifold G(r, n): known as the set of all
subspaces of dimension r in Rn

Reduced Order Model ↔ (V,W)
How to find V and W (criterion)?

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (19/42)
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Finite order frequency-limited model approximation
Standard methods

Truncation (mostly dense)
I Modal, {V,W} are eigenvectors subspaces
I Balanced, {V,W} come from Lyapunov and SVD subspaces
I Singular perturbation, {V,W} come from Lyapunov and SVD subspaces
I ...

Interpolation (mostly sparse)
√

Moment matching (quite general formulation)
√

Rational (Padé, Markov, generalized), {V,W} are Krylov subspaces
√

Multi-point (H2 optimal or not), {V,W} are generalized Krylov subspaces

Hybrid (mostly dense)
√

Balanced / multi-point, {V,W} are generalized Krylov and SVD subspaces

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (20/42)
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Finite order frequency-limited model approximation
Moment matching problem

Moment matching problem
Given a LTI model, H can be expanded at σ ∈ C as

H(s)|σ =
∞∑
i=0

ηi(σ)(s− σ)i (17)

The problem consists in finding a reduced-order model Ĥ with

Ĥ(s)
∣∣
σ

=
∞∑
i=0

η̂i(σ)(s− σ)i, (18)

such that,
ηi(σ) = η̂i(σ) ∀i ∈ 1, . . . , r. (19)

Numerically ill-conditioned to explicitly matching them
Use Krylov subspaces

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (21/42)



Introduction and motivating examples Part 1 - Finite order FL-MOR Part 2 - Finite order IOD-ROM Conclusion

Finite order frequency-limited model approximation
Moment matching problem

Moment matching problem
Given a LTI model, H can be expanded at σ ∈ C as

H(s)|σ =
∞∑
i=0

ηi(σ)(s− σ)i (17)

The problem consists in finding a reduced-order model Ĥ with

Ĥ(s)
∣∣
σ

=
∞∑
i=0

η̂i(σ)(s− σ)i, (18)
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ηi(σ) = η̂i(σ) ∀i ∈ 1, . . . , r. (19)
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Finite order frequency-limited model approximation
Implicit moment matching and Krylov subspace

Definition: Krylov subspace Kr
Given A ∈ Rn×n and v ∈ Rn, the r-th order Krylov subspace, denoted Kr (A,v) is
defined as

Kr(A,v) := span
(
v, Av, . . . , Ar−1v

)
(20)

Krylov subspaces are “everywhere” in linear algebra:
I solution of linear equations Ax = b,
I eigenvalue computation,
I approximate solutions of Lyapunov equations,
I and model reduction. . .

For moment matching, we are interested in :
I Kr (A,B): to match at σ =∞,
I Kr

(
A−1, B

)
: to match at σ = 0,

I Kr
(
(σIn −A)−1 , B

)
: for matching at σ ∈ C,

I or equivalently: Kr
(
AT , CT

)
, etc.
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Finite order frequency-limited model approximation
Implicit moment matching and Krylov subspace

Reminder: Petrov-Galerkin (oblique) projection
Let V, W ∈ Rn×r be such that WTV = Ir,{

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t) ⇒

{
W
T
EV ˙̂x(t) = W

T
AV x̂(t) +W

T
Bu(t)

ŷ(t) = CV x̂(t) +Du(t)
(21)

Theorem: Two-sided moment matching
Let us consider a n-th order SISO LTI dynamical model S : (A,B,C,D,E) and σ ∈ C
s.t. σE −A is full rank. If V,W ∈ Cn×r are full column rank matrices s.t.

Kr
(
(σE −A)−1, (σE −A)−1B

)
⊆ V = span (V )

Kr
(
(σE −A)−T , (σE −A)−TCT

)
⊆ W = span (W )

(22)

then, the 2r first moments of the reduced-order model Ĥ, obtained by projection,
matches the 2r first moments of H at σ, i.e.

ηi(σ) = η̂i(σ), i = 1, . . . , 2r (23)
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matches the 2r first moments of H at σ, i.e.

ηi(σ) = η̂i(σ), i = 1, . . . , 2r (23)

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (23/42)



Introduction and motivating examples Part 1 - Finite order FL-MOR Part 2 - Finite order IOD-ROM Conclusion

Finite order frequency-limited model approximation
One-sided Krylov algorithm in ∞, 0 and σ

Require: A ∈ Rn×n, B ∈ Rn×nu , r ∈ N
1: Construct span(V ) = Kr(A,B)
2: Apply projectors V and W = V {bi-orthogonality}

Ensure: V,W ∈ Rn×r and WTV = Ir

Require: A−1 ∈ Rn×n, B ∈ Rn×nu , r ∈ N
1: Construct span(V ) = Kr(A−1, B)
2: Apply projectors V and W = V {bi-orthogonality}

Ensure: V,W ∈ Rn×r and WTV = Ir

Require: (σIn −A)−1 ∈ Rn×n, B ∈ Rn×nu , r ∈ N
1: Construct span(V ) = Kr

(
(σIn −A)−1, B

)
2: Apply projectors V and W = V {bi-orthogonality}

Ensure: V,W ∈ Cn×r and WTV = Ir
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One-sided Krylov algorithm in ∞, 0 and σ
One-sided Krylov algorithm in ∞, 0 and σ
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One-sided Krylov algorithm in ∞, 0 and σ
One-sided Krylov algorithm in ∞, 0 and σ
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One-sided Krylov algorithm in ∞, 0 and σ
One-sided Krylov algorithm in ∞, 0 and σ
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Finite order frequency-limited model approximation
Two-sided Krylov algorithm

Algorithm: Two-sided Krylov Algorithm (KA2)
Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, r ∈ N, σ ∈ C
1: Construct span(V ) = Kr

(
(σIn −A)−1, B

)
2: Construct span(W ) = Kr

(
(σIn −A)−T , CT

)
3: Set W ←W (WTV )−T {to ensure WTV = Ir}
4: Apply projectors V and W

Ensure: V,W ∈ Cn×r and WTV = Ir

Matches twice more moments thus enhancing the approximation

Instead of 2 Arnoldi procedures, on can use the Lanczos Algorithm11,
I it directly builds V and W with WTV = Ir,
I it is numerically cheaper,
I but breakdowns can occur.

11 Y. Saad, "Iterative methods for sparse linear systems", SIAM, 2003.
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Finite order frequency-limited model approximation
Generalized Krylov and multi-point moment matching

By considering the union of several Krylov subspaces, i.e.

Generalized Krylov subspaces.

Theorem: Two-sided moment matching at several points
Let us consider a n-th order SISO LTI dynamical model S : (A,B,C,D,E) and
{σ1, . . . , σnσ} ∈ Cnσ s.t. ∀i, (σiE − A) is full rank. If V,W ∈ Cn×r are full column
rank matrices s.t.

nσ⋃
k=1

Krk
(
(σkE −A)−1, (σkE −A)−1B

)
⊆ V = span (V )

nσ⋃
k=1

Krk
(
(σkE −A)−T , (σkE −A)−TCT

)
⊆ W = span (W )

(24)

then, the 2rk first moments of the reduced-order model Ĥ, obtained by projection,
matches the 2rk first moments of H at each σk, i.e. for k = 1, . . . , nσ ,

ηi(σk) = η̂i(σk), i = 0, . . . , 2rk − 1. (25)
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Finite order frequency-limited model approximation
Generalized Krylov and multi-point moment matching

Theorem: First-order optimality conditions for the H2 problem
Let Ĥ be a r-th order asymptotically stable model with semi-simple poles only. If Ĥ is
solution of the H2 approximation problem, then

ĉTi H(−λ̂i) = ĉTi Ĥ(−λ̂i)
H(−λ̂i)b̂i = Ĥ(−λ̂i)b̂i

ĉTi H′(−λ̂i)b̂i = ĉTi Ĥ′(−λ̂i)b̂i
(26)

where λ̂i and {ĉi, b̂i} are the poles and associated residues of Ĥ(s).

I the reduced-order model is a bi-tangential Hermite interpolant of the large-scale
model at the opposite of its poles,

I these conditions can be obtained from the state-space formulation (see 12)

12 P. Van-Dooren, K. A. Gallivan, and P. A. Absil, "H2-optimal model reduction of MIMO systems",
Applied Mathematics Letters, vol. 21, no. 12, pp. 53-62, December 2008.
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H(−λ̂i)b̂i = Ĥ(−λ̂i)b̂i
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where λ̂i and {ĉi, b̂i} are the poles and associated residues of Ĥ(s).
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Finite order frequency-limited model approximation
Generalized Krylov and multi-point moment matching

I The optimality conditions can be viewed as a set of coupled equations,(
λ̂i, ĉi, b̂i

)
= F2

(
Â, B̂, Ĉ, D̂, Ê

)
and

(
Â, B̂, Ĉ, D̂, Ê

)
= G2

(
λ̂i, ĉi, b̂i

)
.

(27)
which admit a fixed point at every stationary point of J .
↪→this suggests an iterative procedure(
λ̂i, ĉi, b̂i

)
k+1

= F2
(
Â, B̂, Ĉ, D̂, Ê

)
k+1

,
(
Â, B̂, Ĉ, D̂, Ê

)
k+1

= G2
(
λ̂i, ĉi, b̂i

)
k

(28)

Interpolatory approach (MIMO IRKA or ITIA):
I initially proposed for SISO models as Iterative Rational Krylov Algorithm in 13,
I the step

(
λ̂i, ĉi, b̂i

)
k+1

= F2
(
Â, B̂, Ĉ, D̂, Ê

)
k+1

is done by solving a
small-scale eigenvalue problem,
↪→assumes that Â is diagonalisable

I the step
(
Â, B̂, Ĉ, D̂, Ê

)
k+1

= G2
(
λ̂i, ĉi, b̂i

)
k
is done by tangential

interpolation through Krylov subspaces (projection).

13 S. Gugercin, A.C. Antoulas and C. Beattie, "A rational Krylov iteration for optimal H2 model
reduction", Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, 2006.
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Finite order frequency-limited model approximation
And now a frequency-limited version14

Mixing SVD and interpolatory methods
I V is constructed by Lyapunov and SVD... and especially, frequency-limited

gramians
I W is constructed by interpolatory method
I follow the iterative scheme

10-2 100 102

Frequency [Hz]

-80

-70

-60

-50

-40

-30

-20

G
a
in

[d
B
]

Original model
H2 oriented model reduction
FL-H2 oriented model reduction

14 P. Vuillemin et al., "Paper on going :)", eventually in a Journal.
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Finite order delay structured model approximation
Context and problem description15

Hydraulics green electricity (≈ 10%)
I Dams
I Run-of-the-river

Run-of-the-river (≈ 5%)
I In France, provides 3.6GW
I Rely open-channel hydraulic systems
I Need for analysis and control

15http://alsace.edf.com/actions/fonctionnement-des-centrales-hydroelectriques-sur-le-rhin/
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Finite order delay structured model approximation
Context and problem description

Modelling assumptions
I No discharge, no infiltration, one dimensional flow, small bed slope, small stream

line, negligible vertical acceleration
I Input u: boundary conditions qe(t) and qs(t)
I Output y: water depth
I t, x are the time and spatial variables

Uniform cross section
From equations

H(s, x) ∈ C1×2 (29)

an irrational transfer function at a given po-
sition x = xm.

Non uniform cross section
From a dedicated software

{ωi,Φi(x)} ∈ (C,C1×2) (30)

an input/output transfer data collection at
a given position x = xm.
(not in this presentation)
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Finite order delay structured model approximation
Context and problem description16

∂S

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+
∂(Q2/S)

∂x
+ gS

∂H

∂x
= gS(I − J),

(31)

x ∈ [0 ; L] is the spatial variable, H(x, t) the water depth, S(x, t) the wetted area,
Q(x, t) the discharge...

16 V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes Duff and C. Seren, "From infinite dimensional
modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in
Proceedings of the 15th European Control Conference (ECC’16), Aalborg, Denmark, July, 2016.
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Finite order delay structured model approximation
Context and problem description16

∂S

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+
∂(Q2/S)

∂x
+ gS

∂H

∂x
= gS(I − J),

(31)

x ∈ [0 ; L] is the spatial variable, H(x, t) the water depth, S(x, t) the wetted area,
Q(x, t) the discharge...

1 Apply linearisation at δ = (H0, Q0), which are both xm dependent
2 Apply Laplace around equilibrium
3 Find solutions of h(s, xm), q(s, xm) & identify coefficient (boundary conditions)
4 Full order Loewner interpolation of the filtered function
5 Approximation with and without delay
6 Back to original problem

16 V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes Duff and C. Seren, "From infinite dimensional
modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in
Proceedings of the 15th European Control Conference (ECC’16), Aalborg, Denmark, July, 2016.
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Finite order delay structured model approximation
Context and problem description

h(s, xm, δ) = Ge(s, xm, δ)qe(s)−Gs(s, xm, δ)qs(s) (32)

Ge(s, xm, δ) =
λ1(s)eλ2(s)L+λ1(s)xm − λ2(s)eλ1(s)L+λ2(s)xm

B0s(eλ1(s)L − eλ2(s)L)

Gs(s, xm, δ) =
λ1(s)eλ1(s)xm − λ2(s)eλ2(s)xm

B0s(eλ1(s)L − eλ2(s)L)

(33)

I Irrational transfer function
I Infinite order equation
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Finite order delay structured model approximation
Context and problem description

h(s, xm, δ) = Ge(s, xm, δ)qe(s)−Gs(s, xm, δ)qs(s) (32)
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I Delay behaviour is obvious
I Not H2 function
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Finite order delay structured model approximation
Delay structured ROM

Model-based (uniform)
From equations

H(s, xm) ∈ C1×2 (33)

an irrational transfer function.

Data-based (non uniform)
From a dedicated software

{ωi,Φi(xm)} ∈ (C,C1×2) (34)

an input/output transfer data collection.

... the objective is to approximate it by

˙̂x(t) = Â(δ)x̂(t) + B̂(δ)u(t− τ(δ))
ŷ(t) = Ĉ(δ)x̂(t) + D̂(δ)u(t− τ(δ)),

(35)

I Â ∈ Rr×r, B̂ ∈ Rr×nu , Ĉ ∈ Rny×r and D̂ ∈ Rny×nu
I which are linearly dependent on δ,
I and τ(δ) ∈ Rnu+ is an input delay vector.
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Finite order delay structured model approximation
Delay structured ROM

Model-based (uniform)
From equations

H(s, xm) ∈ C1×2 (33)

an irrational transfer function.

Data-based (non uniform)
From a dedicated software

{ωi,Φi(xm)} ∈ (C,C1×2) (34)

an input/output transfer data collection.

... from the open-channel example

h(s, x, δ) = Ge(s, x, δ)qe(s)−Gs(s, x, δ)qs(s) (35)

one seeks the input delayed r-th order rational function

ĥ(s, δ) = Ĝe(s, δ)qe(s)− Ĝs(s, δ)qs(s)
Ĝe(xm, s, δ) = Re(s, δ)e−τe(δ)s

Ĝs(xm, s, δ) = Rs(s, δ)e−τs(δ)s
(36)
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Finite order delay structured model approximation
Delay structured ROM - an approach when the delay is known

If delays are a-priori known functions, approximation can be done on the shifted
function

h̃(s, xm, δ) = Ge(s, xm, δ)e+τe(δ)sqe(s)−Gs(s, xm, δ)e+τs(δ)sqs(s) (37)

I then apply Loewner
I and go back to h(s, x, δ)

or
I apply TF-IRKA17

I and go back to h(s, x, δ)

The Loewner approach is preferred for practical reasons in18.
However, is the fixed delays the best idea? What if you don’t a priori know them?

17 C.A. Beattie, and S. Gugercin, "Realization-independent H2-approximation", in ProceedingsProceedings
of the 51st IEEE CDC, USA, December, 2012.

18 V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes Duff and C. Seren, "From infinite dimensional
modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in
Proceedings of the 15th ECC, Denmark, July, 2016.

Charles Poussot-Vassal [Onera] Linear dynamical model approximation (36/42)



Introduction and motivating examples Part 1 - Finite order FL-MOR Part 2 - Finite order IOD-ROM Conclusion

Finite order delay structured model approximation
Delay structured ROM - the I/O delay structured alternative 19

Input / output delays structured H2 model approximation

Ĥd := arg min
G ∈ H∞

rank(G) = r � n

||H−G||H2 (38)

where Ĥd = ∆̂oĤ∆̂i.

H2 interpolatory conditions in the delay free case no longer apply
I due to the exponential terms in the transfer function...
I ...which implies a non symmetrical inner product (next slide)
I dedicated conditions need to be derived

19 I. Pontes Duff, C. P-V and C. Seren, "H2-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation
Delay structured ROM - H2-inner product issue

G(s) = 1
s+1 = ψ

s−µ , H(s) = 1
s+2 = φ̂

s−λ̂
, (µ = −1 and λ̂ = −2)

I Delay-free case20 (Lemma 2.4):

〈G,H〉H2 = ψH(−µ) = ψ
φ̂

−µ− λ̂
=

1
3

= φ̂
ψ

−λ̂− µ
= φ̂G(−λ̂) = 〈H,G〉H2

H2-inner product can be computed using pole-residues decomposition of G or H.
I Delay dependent case21 :

20 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

21 I. Pontes Duff, C. P-V and C. Seren, "H2-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation
Delay structured ROM - H2-inner product issue

G(s) = 1
s+1 = ψ

s−µ , H(s) = 1
s+2 = φ̂

s−λ̂
, (µ = −1 and λ̂ = −2)

I Delay-free case20 (Lemma 2.4):

〈G,H〉H2 = ψH(−µ) = ψ
φ̂

−µ− λ̂
=

1
3

= φ̂
ψ

−λ̂− µ
= φ̂G(−λ̂) = 〈H,G〉H2

H2-inner product can be computed using pole-residues decomposition of G or H.
I Delay dependent case21 :

Let H(s)← H(s)e−s.
Let move the delay as 〈He−s,G〉H2 = 〈H,Ges〉H2 , one obtains :

〈G,He−s〉H2 = ψH(−µ)eµ =
1
3
e−1 6=

1
3
e2 = φ̂G(−λ̂)e−λ̂ = 〈H,Ges〉H2 .

Symmetric H2-inner product does not provide the same result any more.

20 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

21 I. Pontes Duff, C. P-V and C. Seren, "H2-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation
Delay structured ROM - H2-inner product issue

G(s) = 1
s+1 = ψ

s−µ , H(s) = 1
s+2 = φ̂

s−λ̂
, (µ = −1 and λ̂ = −2)

I Delay-free case20 (Lemma 2.4):

〈G,H〉H2 = ψH(−µ) = ψ
φ̂

−µ− λ̂
=

1
3

= φ̂
ψ

−λ̂− µ
= φ̂G(−λ̂) = 〈H,G〉H2

H2-inner product can be computed using pole-residues decomposition of G or H.
I Delay dependent case21 :

Now using the H2-inner product between He−s and G using the extended
formula:

〈G,He−s〉H2 = ψH(−µ)eµ = ψ
φ̂

−µ− λ̂
eµ =

1
3
e−1.

Which modifies the optimality conditions

20 S. Gugercin and A C. Antoulas and C A. Beattie, "H2 Model Reduction for Large Scale Linear
Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

21 I. Pontes Duff, C. P-V and C. Seren, "H2-optimal model approximation by input / output-delay
structured reduced order models", in Systems & Control Letters.
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Finite order delay structured model approximation
Delay structured ROM - SISO I/O delay ROM approximation H2 optimality conditions

G(s) =
N∑
j=1

ψj

s− µj
and Ĥ(s) =

n∑
k=1

φ̂k

s− λ̂k
, and Ĥd = He−τs

Theorem: SISO case
Interpolatory conditions on G̃

Ĥ(−λ̂k) = G̃(−λ̂k), Ĥ′(−λ̂k) = G̃′(−λ̂k), (39)

Delay conditions
n∑
j=1

µjψj

(
r∑
k=1

φk

µj + λ̂k

)
eτµj = 0. (40)

for all k = 1 . . . r, l = 1 . . . nu and m = 1 . . . ny where G̃(s) is given by

G̃(s) =
n∑
j=1

ψj

s− µj
eτµj (pole / residue decomposition needed). (41)
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Finite order delay structured model approximation
Delay structured ROM (delay structured H2, approximate)
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Ĥ, n = 4 (IRKA)
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I Rational model obtained by Loewner filtered
I Rational ROM, r = 4 filtered (with and without input delay structure)
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Errors
I IO-dIRKA (r=4)

4.34672× 10−15

I IRKA (r=4):
6.43008× 10−15

I IRKA (r=8):
4.06717× 10−15

I IRKA (r=12):
3.76871× 10−15
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Epilogue and perspectives
What to keep in mind?

Model approximation...
I plays a pivotal role in many industrial and applicative contexts
I interesting tool for analysis, optimization...

MOR Toolbox...
I is tailored to a large family of representation
I ... from input output data
I ... from irrational transfer functions
I ... from rational functions or a set of ODE
I Has been applied in different industrial contexts
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Linear dynamical model approximation

... and its applications

Charles Poussot-Vassal

May 2018
Feanicses Workshop

http://mordigitalsystems.fr/
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