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Verification

e Numerical methods
The discretization of X + X + x = 0 by a Euler scheme with initial
conditions in [0, 1] (position,speed). Let h = 0.01.

()= (2 G

e Programs

x = [1,2];

y = [1.2];

while (x*+v*>=1) {
oX = X;
oy =Y,
x = 0.5%x0x—0.4%o0y
y = ox—0.5x%o0y;

}
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Properties to prove

Some interesting properties on the examples :

1 The values are bounded? The output values are both smaller than 17

2 Can we leave the loop for all possible initial values? Number of iterations?

Other interesting properties in general :
Robustness, termination, reachability...
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The problem formulation

Inputs
e Linear System with d states
Xo € Xin, Xk+1 = Axk, k €N;

where X is a polytope.

o Property of the form:
VkeN, xxe{yeR?|y"Qy < a}
where Q is symmetric and « € RU {+o0}.
Output

A proof of the property or a counterexample.
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On the examples

o First example
e Boundedness:
VkeN, (Xk, Vk) |d(Xk, Vk)T < 400
And we want the maximal Euclidean norm
e Output values < 17

Vke N, (Xk7 Vk) ((])- 8) (Xk, Vk)T S 1
and
0 0
VkeN, (Xk7 Vk) (0 1) (Xk, vk)T <1

e Second example :
Not formulated as a sublevel set but the proposed method will solve the
problem

Optimal verification of LTI discrete-time systems | AA | 7/28



Mathematical Problems

0000 00 000000000 000 000
Outline

@® Mathematical Problems
Formulation
Computational issues

Optimal verification of LTI discrete-time systems | AA | 8/28



Mathematical Problems

0000 00 000000000 000 000
S Formulation
Formulation

To prove the property:
VkeN, x]Qx < a

can be reduced to prove:
sup sup xTA*TQAx < o
kEN xe xin

To prove or disprove the property it suffices to compute :

KT A 2k
sup sup x'TA“ QA"x
keN xg Xin
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Infinities

® The function
f:x > supxT AT QA x
kEN

is not quadratic nor polynomial nor convex/concave a priori.

Thus
sup f(x)
xeXin

cannot be solved exactly and an overapproximation cannot be computed
easily.
® The evaluation of f requires an infinite number of computations but we

can use :
T
fo:x = xTAKTQAx.

However, for all k € N, we have to solve a NP-Hard problem.
Then to solve exactly the problem we have to finitely discretized the problem:
o for X'
e for k € N.
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Using convexity

We recall the well-known lemma:

-
' Lemma (Supremum of convex functions over compact convex sets)
‘let g: R? — R be a convex and D be a convex compact set. Then :
1

1

] supg(x) = sup g(x)

: xeD xe&(D)

. where £(D) denotes the set of extreme points of D.

L

If Q>=0, thenVk €N, f: x+— xTAkTQAkx is convex.

e X™ is a polytope then £(X™) is a finite set.
o We compute once £(X™).
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Discretisation of the infinite sequence

Now assume Q > 0. Then for all k € N, sup xTAT QA x can be computed
xeXin
exactly in finite time .

The problem is to compute K such that:

KT A pk KT A pk
sup sup x'A“ QA"x = sup sup xTA“ QA"x
kEN xe xin kE[K] xeXin
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Discussion about hypotheses

Since @ = 0, we should ask for the boundedness of {A*x, k € N}, Vx € X' .
Indeed:

o If Q= 0, then @ induces a norm on RY. Hence
xTA*T QA x = ||A*x||@ < 400 <= (A*X)ken bounded.

o If @ = 0, we can allow unbounded sequences in the null space of Q.
The boundedness allows p(A) = 1.

To simplify the problem, we assume for A — 0 <= p(A) < 1.
Finally we assume Q = 0 and p(A) < 1.

o T T T T T T T T T T T T T T T T T T TS EEEE - 1
1
1

Theorem (Computable integer)
There exists a computable K such that for all x € X™®,

supxTAKTQA*x = sup xTAKT QA x
keN ke[K]

Optimal verification of LTI discrete-time systems | AA | 14/28



Discretizations
0000 00 000®00000 000 000

Matrix norms

Matrix norms :
e Norms on R?*? (sub-additive and strictly positive);
e Sub-multiplicative :N(AB) < N(A)N(B).

The sub-multiplicative property implies N(A¥) < N(A)*.

For every norm || - || over RY, the map

A
N(A) = sup [1Ax]
x€RI\ {0} [l

is a matrix norm.
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U Maixtheoytoos
Rayleigh quotient

Let B> 0 and C > 0.
Raleigh quotient is defined, for all x € R?\{0} by
xTBx

xTCx

Two quantities are interesting:

sup of Raleigh quotient = /\maX(C_l/2BC_1/2)
inf of Raleigh quotient = Apmin(C~Y/2BC™Y/2)

Special case : C = Id, the sup is Amax(B) and the inf is Amin(B).
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A first idea
Let x € X™.
xTATQA X < Amax(Q)||AX|13 From Rayleigh quotient
< Amax(Q)||A*|3]|x]3  From norm operator def.
< Amax(Q)[|AIB¥Ix|I3 From matrix norm def.
Now let define, for B = 0, u(B) = sup x"Bx.
XEXir‘
We impose for K that xTAKT QAR x < sup xTQx = p(Q) for all k > K.

xeXin
We have to exhibit a lower bound on integers k:

JAIB* < 1 @) Amax(Q) () "
Using In, if [|A[j2 < 1 we get :

In(14( @) Amax (@)~ u(ld) 1)
k2 In([IA[Z)
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Needs a Lyapunov function

Two remarks:
e The assumption ||Al|2 < 1 is very restrictive.

e We have to check whether

In((@)Amax(Q) 'u(ld) ™) > 0 <= 1(Q)Amax(Q)u(ld) < 1
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Needs a Lyapunov function

The condition p(A) < 1 the existence of a matrix norm || - || such that ||A| < 1.
Let P such that P > 0 and P — ATPA - 0 (exists since p(A) < 1).

TAT

Then x — v/xTPx is a norm over R? and then ||A||%> = SUP,crd\ {0} %
is @ matrix norm.

.................................................. -
' Proposmon :
10 < [|Allp < 1 and p(Q)(P) Amax(@)Amin(P) i

.................................................. -
: Proof. :
, From Weyl's inequalities i.e. for symmetric matrices M, N : :
: )\k(M)'i‘Amm(N) S )\k(M"‘N) S )\k(M)'i")\max(N) :
rand p(A) < ||Allp. O
b m e e e e e e e .. .. .. ... .- .- .- - === EEEEEEEEEEE===== === B
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Final integers

Let P a solution of the discrete Lyapunov equation:

 [1n(u(Q)u(P) A @Armin(P) )
K=F in(JATB) 1

Optimal verification of LTI discrete-time systems | AA | 20/28



Discretizations
0000 00 00000000e 000 000

Final integers

Let P a solution of the discrete Lyapunov equation:

100 @) Aumax (@ Amin( P) )
K=F [ in(AI%) ] 1

or using Rayleigh quotient:

= ~1/2 Ap—1/2
K E [ln(u(Q)u(P) s (PGP ))} o
In([|All)
We can define for a given t > 0, a matrix P such that tP > Q and
P—ATPA > 0:

_ [in(u(Q@u(P) ™)
Ke=E [ in(AT2) ]“

Optimal verification of LTI discrete-time systems | AA | 20/28



Experiments

0000 00 000000000 000 000
Outline

@ Experiments
Solving the examples
Benchmarks

Optimal verification of LTI discrete-time systems | AA | 21/28



Experiments
0000 00 000000000 @00 000

Example - Discretisation of Harmonic Oscillator
Let recall the first example:

(5 <o ()= (G 12 ()
We choose t = Amax(Q) for K.
¢ Boundedness:
For Q =1d, K =169, K; = 169, K; = 133.
Max ||(xk, vk)|]2 = 2 at k = 0 for (xo, vo) = (1,1);
o Maximal value of x,?

0 0

Max=1.6489 at k = 61 for vector =(1,1);The property xx < 1 is false.
o Maximal value of v,?

For Q = (1 0), K =296, K; = 188, K; = 230.

0 1
Max=1 at k = 0 for vector =(1,1);

For Q = (0 0), K =296, K; = 261, K; = 228.
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Example - Leaving the loop

In the second example the data are

X" = [1,2, A= <0i5 :g'g) ol @ =[],

To apply the previous method we have to replace p(Q) by 1 in K, K1 and K;.
Indeed, we constructed K such that sup xTAKT QA x < u(Q) for all k > K.
xeXin

. KT A Ak

Here we are interested in the first k such that sup xTA* QA*x < 1.
xeXin

For example, we compute

In(1£(P) " Amax (@) Amin (P)
In(||AlI3)

The modified K; = 11 and the modified K; = 281.

K=E +1=11

We can take the smallest integer thus 11.
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Experiments

Let us test the Matlab code.

Optimal verification of LTI discrete-time systems | AA | 24/28



Future works and conclusion

0000 00 000000000 000 000
Outline

@ Future works and conclusion
Future works
Conclusion

Optimal verification of LTI discrete-time systems | AA | 25/28



Future works and conclusion
0000 00 000000000 000 @00

CRewewers
Optimize the integers

The integers K, K1, K; can be big.
We should solve a minimization problem where P the a decision variable.
Start by solving the problem

Min{||Al|p | P > 0}

+ The function P — ||Al|p is quasi-convex;
+ Bounded from below by p(A);

— The constraints set is not closed.
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About affine and non-linear dynamics

o Affine case :

o Lift-and-Project (allow 1 as eigenvalue);
o Use the closed form for x;, = Akxg + EJ’.:OI Alb.

e Non-linear dynamics :

e Norm operator Lyapunov functions ;
o Non-linear spectral radii (warning well-defined on pointed cones) or joint
spectral radii.
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Conclusion

o Succeed to solve exactly optimization problems over reachable values
constraints set with a finite number of evaluations.

e Succeed to compute global stopping criteria for stable linear systems and
ellipsoidal properties.
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