0000	00	00000000	000	000

Optimal verification of LTI discrete-time systems

Assalé Adjé

LAMPS Université de Perpignan Via Domitia

> FEANICSES 2018 24th May 2018

0000	00	00000000	000	000

1 Introduction

2 Mathematical Problems

3 Discretizations

4 Experiments

5 Future works and conclusion

Introduction				
0000	00	00000000	000	000

Introduction Motivation The verification problem

2 Mathematical Problems

3 Discretizations

4 Experiments

5 Future works and conclusion

Introduction				
• 0 00	00	00000000	000	000
Motivation				

Verification

Numerical methods

The discretization of $\ddot{x} + \dot{x} + x = 0$ by a Euler scheme with initial conditions in $[0, 1]^2$ (position,speed). Let h = 0.01.

$$\begin{pmatrix} x_{k+1} \\ v_{k+1} \end{pmatrix} = \begin{pmatrix} 1 & h \\ -h & 1-h \end{pmatrix} \begin{pmatrix} x_k \\ v_k \end{pmatrix}$$

Programs

$$\begin{array}{l} x = [1,2]; \\ y = [1,2]; \\ \text{while } (x^2 + v^2 \! > \! = \! 1) \\ \text{ox} = x; \\ \text{oy} = y; \\ x = 0.5 * \text{ox} - 0.4 * \text{oy} \\ y = \text{ox} - 0.5 * \text{oy}; \\ \end{array}$$

Introduction				
0000	00	00000000	000	000
Motivation				

Properties to prove

Some interesting properties on the examples :

- 1 The values are bounded? The output values are both smaller than 1?
- 2 Can we leave the loop for all possible initial values? Number of iterations?

Other interesting properties in general : Robustness, termination, reachability...

Introduction				
0000	00	00000000	000	000
The verification problem				

The problem formulation

Inputs

• Linear System with *d* states

$$x_0 \in \boldsymbol{X}^{\text{in}}, \ x_{k+1} = \boldsymbol{A} x_k, \ k \in \mathbb{N};$$

where X^{in} is a polytope.

• Property of the form:

$$\forall k \in \mathbb{N}, \ x_k \in \{y \in \mathbb{R}^d \mid y^{\mathsf{T}} \mathbf{Q} y \ll \alpha\}$$

where Q is symmetric and $\alpha \in \mathbb{R} \cup \{+\infty\}$.

Output

A proof of the property or a counterexample.

Introduction				
0000	00	00000000	000	000
The verification problem				

On the examples

- First example
 - Boundedness:

$$\forall k \in \mathbb{N}, \ (x_k, v_k) \operatorname{\mathsf{Id}}(x_k, v_k)^\intercal < +\infty$$

And we want the maximal Euclidean norm

• Output values ≤ 1 ?

$$\forall k \in \mathbb{N}, \ (x_k, v_k) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} (x_k, v_k)^{\mathsf{T}} \leq 1$$

and

$$\forall k \in \mathbb{N}, \ (x_k, v_k) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} (x_k, v_k)^{\mathsf{T}} \leq 1$$

• Second example :

Not formulated as a sublevel set but the proposed method will solve the problem

	Mathematical Problems			
0000	00	00000000	000	000

Introduction

2 Mathematical Problems Formulation

Computational issues

B Discretizations

4 Experiments

5 Future works and conclusion

	Mathematical Problems			
0000	•0	00000000	000	000
Formulation				

Formulation

To prove the property:

$$\forall k \in \mathbb{N}, \ x_k^{\mathsf{T}} Q x_k \ll \alpha$$

can be reduced to prove:

 $\sup_{k \in \mathbb{N}} \sup_{x \in X^{\text{in}}} x^{\mathsf{T}} A^{k \mathsf{T}} Q A^{k} x \ll \alpha$

To prove or disprove the property it suffices to compute :

 $\sup_{k\in\mathbb{N}}\sup_{x\in X^{\text{in}}}x^{\mathsf{T}}A^{k\,\mathsf{T}}QA^{k}x$

	Mathematical Problems			
0000	0•	00000000	000	000
Computational issues				

Infinities

The function

$$f: x \mapsto \sup_{k \in \mathbb{N}} x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x$$

 $\sup_{x \in X^{\text{in}}} f(x)$

is not quadratic nor polynomial nor $\operatorname{convex}/\operatorname{concave}$ a priori. Thus

cannot be solved exactly and an overapproximation cannot be computed easily.

2 The evaluation of f requires an infinite number of computations but we can use :

$$f_k: x \mapsto x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^k x.$$

However, for all $k \in \mathbb{N}$, we have to solve a NP-Hard problem.

Then to solve exactly the problem we have to finitely discretized the problem:

- for *X*ⁱⁿ;
- for $k \in \mathbb{N}$.

		Discretizations		
0000	00	00000000	000	000

Introduction

2 Mathematical Problems

3 Discretizations

Initial polytope treatment Infinite sequences Computation of (a) integer(s) KHypotheses Matrix theory tools Construction of K

4 Experiments

5 Future works and conclusion

Using convexity

We recall the well-known lemma:

Lemma (Supremum of convex functions over compact convex sets) Let $g : \mathbb{R}^d \mapsto \mathbb{R}$ be a convex and D be a convex compact set. Then : $\sup_{x \in D} g(x) = \sup_{x \in \mathcal{E}(D)} g(x)$ where $\mathcal{E}(D)$ denotes the set of extreme points of D.

If $Q \succeq 0$, then $\forall k \in \mathbb{N}$, $f_k : x \mapsto x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^k x$ is convex.

- X^{in} is a polytope then $\mathcal{E}(X^{\text{in}})$ is a finite set.
- We compute once $\mathcal{E}(X^{\mathrm{in}})$.

		Discretizations		
0000	00	00000000	000	000
Infinite sequences				

Discretisation of the infinite sequence

Now assume $Q \succeq 0$. Then for all $k \in \mathbb{N}$, $\sup_{x \in X^{\text{in}}} x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x$ can be computed exactly in finite time .

The problem is to compute K such that:

$$\sup_{k \in \mathbb{N}} \sup_{x \in X^{\text{in}}} x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x = \sup_{k \in [\mathsf{K}]} \sup_{x \in X^{\text{in}}} x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x$$

		Discretizations		
0000	00	00000000	000	000
Hypotheses				

Discussion about hypotheses

Since $Q \succeq 0$, we should ask for the boundedness of $\{A^k x, k \in \mathbb{N}\}$, $\forall x \in X^{in}$. Indeed:

• If $Q \succ 0$, then Q induces a norm on \mathbb{R}^d . Hence

$$x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x = \|A^{k} x\|_{Q} < +\infty \iff (A^{k} x)_{k \in \mathbb{N}}$$
 bounded.

• If $Q \succeq 0$, we can allow unbounded sequences in the null space of Q. The boundedness allows $\rho(A) = 1$.

To simplify the problem, we assume for $A^k \mapsto 0 \iff \rho(A) < 1$.

Finally we assume $Q \succeq 0$ and $\rho(A) < 1$.

Theorem (Computable integer) There exists a computable K such that for all $x \in X^{in}$, $\sup_{k \in \mathbb{N}} x^{\mathsf{T}} A^{k\mathsf{T}} Q A^{k} x = \sup_{k \in [K]} x^{\mathsf{T}} A^{k\mathsf{T}} Q A^{k} x$

		Discretizations		
0000	00	00000000	000	000
Matrix theory tools				

Matrix norms

Matrix norms :

- Norms on $\mathbb{R}^{d \times d}$ (sub-additive and strictly positive);
- Sub-multiplicative : $N(AB) \leq N(A)N(B)$.

The sub-multiplicative property implies $N(A^k) \leq N(A)^k$.

For every norm $\|\cdot\|$ over \mathbb{R}^d , the map

$$N(A) = \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{\|Ax\|}{\|x\|}$$

is a matrix norm.

		Discretizations		
0000	00	00000000	000	000
Matrix theory tools				

Rayleigh quotient

Let $B \succeq 0$ and $C \succ 0$. Raleigh quotient is defined, for all $x \in \mathbb{R}^d \setminus \{0\}$ by

$$\frac{x^{\mathsf{T}}Bx}{x^{\mathsf{T}}Cx}$$

Two quantities are interesting:

$$\begin{cases} \text{sup of Raleigh quotient} = \lambda_{\max}(C^{-1/2}BC^{-1/2}) \\ \text{inf of Raleigh quotient} = \lambda_{\min}(C^{-1/2}BC^{-1/2}) \end{cases}$$

Special case : C = Id, the sup is $\lambda_{max}(B)$ and the inf is $\lambda_{min}(B)$.

		Discretizations		
0000	00	000000000	000	000
Construction of K				
A first idea				
/ mst laca				
Let $x \in$	$\boldsymbol{X}^{ ext{in}}$			
	<i>/ · · · · · · · · · ·</i>			

$$\begin{split} x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x &\leq \lambda_{\max}(Q) \|A^{k} x\|_{2}^{2} & \text{From Rayleigh quotient} \\ &\leq \lambda_{\max}(Q) \|A^{k}\|_{2}^{2} \|x\|_{2}^{2} & \text{From norm operator def.} \\ &\leq \lambda_{\max}(Q) \|A\|_{2}^{2k} \|x\|_{2}^{2} & \text{From matrix norm def.} \\ \text{Now let define, for } B \succeq 0, \ \mu(B) = \sup_{\substack{x \in X^{\text{in}} \\ x \in X^{\text{in}}} x^{\mathsf{T}} B x.} \\ \text{We impose for } K \text{ that } x^{\mathsf{T}} A^{k^{\mathsf{T}}} Q A^{k} x \leq \sup_{\substack{x \in X^{\text{in}} \\ x \in X^{\text{in}}} x^{\mathsf{T}} Q x} = \mu(Q) \text{ for all } k \geq K. \\ \text{We have to exhibit a lower bound on integers } k: \end{split}$$

$$\|A\|_{2}^{2k} \leq \mu(Q)\lambda_{\max}(Q)^{-1}\mu(Id)^{-1}$$

Using In, if $||A||_2^2 < 1$ we get :

$$k \geq rac{ \ln(\mu(\mathcal{Q})\lambda_{\max}(\mathcal{Q})^{-1}\mu(\mathcal{Id})^{-1})}{\ln(\|\mathcal{A}\|_2^2)}$$

		Discretizations		
0000	00	000000000	000	000
Construction of K				

Needs a Lyapunov function

Two remarks:

- The assumption $||A||_2 < 1$ is very restrictive.
- We have to check whether

 $\ln(\mu(\boldsymbol{\textit{Q}})\lambda_{\max}(\boldsymbol{\textit{Q}})^{-1}\mu(\boldsymbol{\textit{Id}})^{-1}) \geq \mathsf{0} \iff \mu(\boldsymbol{\textit{Q}})\lambda_{\max}(\boldsymbol{\textit{Q}})\mu(\boldsymbol{\textit{Id}}) \leq 1$

Needs a Lyapunov function

The condition $\rho(A) < 1$ the existence of a matrix norm $\|\cdot\|$ such that $\|A\| < 1$. Let P such that $P \succ 0$ and $P - A^{\mathsf{T}}PA \succ 0$ (exists since $\rho(A) < 1$). Then $x \mapsto \sqrt{x^{\mathsf{T}} P x}$ is a norm over \mathbb{R}^d and then $||A||_P^2 = \sup_{x \in \mathbb{R}^d \setminus \{0\}} \frac{x^{\mathsf{T}} A^{\mathsf{T}} P A x}{x^{\mathsf{T}} P x}$ is a matrix norm. Proposition $0 < ||A||_P < 1$ and $\mu(Q)\mu(P)^{-1}\lambda_{\max}(Q)\lambda_{\min}(P)^{-1}$. Proof. From Weyl's inequalities i.e. for symmetric matrices M, N: $\lambda_k(M) + \lambda_{\min}(N) \leq \lambda_k(M+N) \leq \lambda_k(M) + \lambda_{\max}(N)$ and $\rho(A) \leq ||A||_P$.

		Discretizations		
0000	00	00000000	000	000
Construction of K				

Final integers

Let P a solution of the discrete Lyapunov equation:

$$\mathcal{K} = \mathcal{E}\left[rac{\ln(\mu(Q)\mu(P)^{-1}\lambda_{\max}(Q)\lambda_{\min}(P)^{-1})}{\ln(\|A\|_P^2)}
ight] + 1$$

Final integers

Let P a solution of the discrete Lyapunov equation:

$$\mathcal{K} = E\left[\frac{\ln(\mu(Q)\mu(P)^{-1}\lambda_{\max}(Q)\lambda_{\min}(P)^{-1})}{\ln(\|A\|_P^2)}\right] + 1$$

or using Rayleigh quotient:

$$K_{1} = E\left[\frac{\ln(\mu(Q)\mu(P)^{-1}\lambda_{\max}(P^{-1/2}QP^{-1/2}))}{\ln(\|A\|_{P}^{2})}\right] + 1$$

We can define for a given t > 0, a matrix P such that $tP \succeq Q$ and $P - A^{\mathsf{T}}PA \succ 0$:

$$K_t = E\left[rac{\ln(\mu(Q)\mu(P)^{-1}t^{-1})}{\ln(\|A\|_P^2)}
ight] + 1$$

			Experiments	
0000	00	00000000	000	000

Introduction

2 Mathematical Problems

3 Discretizations

4 Experiments Solving the examples Benchmarks

5 Future works and conclusion

			Experiments	
0000	00	00000000	•o o	000
Solving the examples				

Example - Discretisation of Harmonic Oscillator

Let recall the first example:

$$egin{pmatrix} x_0 \ v_0 \end{pmatrix} \in [0,1]^2, \ egin{pmatrix} x_{k+1} \ v_{k+1} \end{pmatrix} = egin{pmatrix} 1 & h \ -h & 1-h \end{pmatrix} egin{pmatrix} x_k \ v_k \end{pmatrix}$$

We choose $t = \lambda_{\max}(Q)$ for K_t .

Boundedness:

For Q = Id, K = 169, $K_1 = 169$, $K_t = 133$.

Max
$$||(x_k, v_k)||_2 = 2$$
 at $k = 0$ for $(x_0, v_0) = (1, 1)$;

• Maximal value of x_k?

For
$$Q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $K = 296$, $K_1 = 188$, $K_t = 230$.

Max=1.6489 at k = 61 for vector =(1,1); The property $x_k \le 1$ is false.

• Maximal value of v_k ?

For
$$Q = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
, $K = 296$, $K_1 = 261$, $K_t = 228$
Max=1 at $k = 0$ for vector =(1,1);

Example - Leaving the loop

In the second example the data are

$$X^{
m in} = \left[1,2
ight]^2, \,\, {\cal A} = egin{pmatrix} 0.5 & -0.4 \ 1 & -0.5 \end{pmatrix} \,\,$$
 and $\, {\cal Q} = {
m Id} \,.$

To apply the previous method we have to replace $\mu(Q)$ by 1 in K, K₁ and K_t. Indeed, we constructed K such that sup $x^{\mathsf{T}}A^{k\mathsf{T}}QA^{k}x \leq \mu(Q)$ for all k > K. $x \in X^{in}$ Here we are interested in the first \bar{k} such that sup $x^{\mathsf{T}}A^{\bar{k}^{\mathsf{T}}}QA^{\bar{k}}x < 1$. $x \in X^{in}$

For example, we compute

$$K = E\left[\frac{\ln(\mu(P)^{-1}\lambda_{\max}(Q)\lambda_{\min}(P)^{-1})}{\ln(\|A\|_{P}^{2})}\right] + 1 = 11$$

The modified $K_1 = 11$ and the modified $K_t = 281$.

We can take the smallest integer thus 11.

			Experiments	
0000	00	00000000	00●	000
Benchmarks				

Experiments

Let us test the Matlab code.

				Future works and conclusion
0000	00	00000000	000	000

Introduction

2 Mathematical Problems

3 Discretizations

4 Experiments

5 Future works and conclusion Future works Conclusion

				Future works and conclusion
0000	00	00000000	000	• o o
Future works				

Optimize the integers

The integers K, K_1, K_t can be big.

We should solve a minimization problem where P the a decision variable.

Start by solving the problem

 $\mathsf{Min}\{\|A\|_P \mid P \succ 0\}$

- + The function $P \mapsto ||A||_P$ is quasi-convex;
- + Bounded from below by $\rho(A)$;
- The constraints set is not closed.

				Future works and conclusion
0000	00	00000000	000	000
Future works				

About affine and non-linear dynamics

- Affine case :
 - Lift-and-Project (allow 1 as eigenvalue);
 - Use the closed form for $x_k = A^k x_0 + \sum_{i=0}^{k-1} A^i b$.
- Non-linear dynamics :
 - Norm operator Lyapunov functions ;
 - Non-linear spectral radii (warning well-defined on pointed cones) or joint spectral radii.

				Future works and conclusion
0000	00	00000000	000	000
Conclusion				

Conclusion

- Succeed to solve exactly optimization problems over reachable values constraints set with a finite number of evaluations.
- Succeed to compute global stopping criteria for stable linear systems and ellipsoidal properties.