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Motivation

Verification

• Numerical methods
The discretization of ẍ + ẋ + x = 0 by a Euler scheme with initial
conditions in [0, 1]2 (position,speed). Let h = 0.01.(

xk+1
vk+1

)
=
(

1 h
−h 1− h

)(
xk
vk

)
• Programs

x = [ 1 , 2 ] ;
y = [ 1 , 2 ] ;
wh i l e (x2 + v 2>=1) {

ox = x ;
oy = y ;
x = 0.5∗ ox−0.4∗ oy
y = ox−0.5∗ oy ;

}
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Motivation

Properties to prove

Some interesting properties on the examples :

1 The values are bounded? The output values are both smaller than 1?

2 Can we leave the loop for all possible initial values? Number of iterations?

Other interesting properties in general :
Robustness, termination, reachability...
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The verification problem

The problem formulation

Inputs

• Linear System with d states

x0 ∈ X in, xk+1 = Axk , k ∈ N;

where X in is a polytope.
• Property of the form:

∀ k ∈ N, xk ∈ {y ∈ Rd | yᵀQy � α}

where Q is symmetric and α ∈ R ∪ {+∞}.

Output

A proof of the property or a counterexample.
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The verification problem

On the examples

• First example
• Boundedness:

∀ k ∈ N, (xk , vk ) Id(xk , vk )ᵀ < +∞
And we want the maximal Euclidean norm

• Output values ≤ 1?

∀ k ∈ N, (xk , vk )
(
1 0
0 0

)
(xk , vk )ᵀ ≤ 1

and
∀ k ∈ N, (xk , vk )

(
0 0
0 1

)
(xk , vk )ᵀ ≤ 1

• Second example :
Not formulated as a sublevel set but the proposed method will solve the
problem
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Formulation

Formulation

To prove the property:
∀ k ∈ N, xᵀ

k Qxk � α

can be reduced to prove:

sup
k∈N

sup
x∈X in

xᵀAkᵀQAkx � α

To prove or disprove the property it suffices to compute :

sup
k∈N

sup
x∈X in

xᵀAkᵀQAkx
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Computational issues

Infinities

1 The function
f : x 7→ sup

k∈N
xᵀAkᵀQAkx

is not quadratic nor polynomial nor convex/concave a priori.
Thus

sup
x∈X in

f (x)

cannot be solved exactly and an overapproximation cannot be computed
easily.

2 The evaluation of f requires an infinite number of computations but we
can use :

fk : x 7→ xᵀAkᵀQAkx .

However, for all k ∈ N, we have to solve a NP-Hard problem.

Then to solve exactly the problem we have to finitely discretized the problem:
• for X in;
• for k ∈ N.
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Initial polytope treatment

Using convexity

We recall the well-known lemma:

Lemma (Supremum of convex functions over compact convex sets)

Let g : Rd 7→ R be a convex and D be a convex compact set. Then :

sup
x∈D

g(x) = sup
x∈E(D)

g(x)

where E(D) denotes the set of extreme points of D.

If Q � 0, then∀ k ∈ N, fk : x 7→ xᵀAkᵀQAkx is convex.

• X in is a polytope then E(X in) is a finite set.
• We compute once E(X in).

Optimal verification of LTI discrete-time systems | AA | 12/28



Introduction Mathematical Problems Discretizations Experiments Future works and conclusion

Infinite sequences

Discretisation of the infinite sequence

Now assume Q � 0. Then for all k ∈ N, sup
x∈X in

xᵀAkᵀQAkx can be computed

exactly in finite time .

The problem is to compute K such that:

sup
k∈N

sup
x∈X in

xᵀAkᵀQAkx = sup
k∈[K ]

sup
x∈X in

xᵀAkᵀQAkx
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Hypotheses

Discussion about hypotheses
Since Q � 0, we should ask for the boundedness of {Akx , k ∈ N}, ∀ x ∈ X in .

Indeed:
• If Q � 0, then Q induces a norm on Rd . Hence

xᵀAkᵀQAkx = ‖Akx‖Q < +∞ ⇐⇒ (Akx)k∈N bounded.

• If Q � 0, we can allow unbounded sequences in the null space of Q.
The boundedness allows ρ(A) = 1.

To simplify the problem, we assume for Ak 7→ 0 ⇐⇒ ρ(A) < 1.

Finally we assume Q � 0 and ρ(A) < 1.

Theorem (Computable integer)

There exists a computable K such that for all x ∈ X in,

sup
k∈N

xᵀAkᵀQAkx = sup
k∈[K ]

xᵀAkᵀQAkx

Optimal verification of LTI discrete-time systems | AA | 14/28



Introduction Mathematical Problems Discretizations Experiments Future works and conclusion

Matrix theory tools

Matrix norms

Matrix norms :
• Norms on Rd×d (sub-additive and strictly positive);
• Sub-multiplicative :N(AB) ≤ N(A)N(B).

The sub-multiplicative property implies N(Ak ) ≤ N(A)k .

For every norm ‖ · ‖ over Rd , the map

N(A) = sup
x∈Rd\{0}

‖Ax‖
‖x‖

is a matrix norm.
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Matrix theory tools

Rayleigh quotient

Let B � 0 and C � 0.
Raleigh quotient is defined, for all x ∈ Rd\{0} by

xᵀBx
xᵀCx

Two quantities are interesting: sup of Raleigh quotient = λmax(C−1/2BC−1/2)

inf of Raleigh quotient = λmin(C−1/2BC−1/2)

Special case : C = Id, the sup is λmax(B) and the inf is λmin(B).
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Construction of K

A first idea
Let x ∈ X in.

xᵀAkᵀQAkx ≤ λmax(Q)‖Akx‖22 From Rayleigh quotient

≤ λmax(Q)‖Ak‖22‖x‖22 From norm operator def.

≤ λmax(Q)‖A‖2k
2 ‖x‖22 From matrix norm def.

Now let define, for B � 0, µ(B) = sup
x∈X in

xᵀBx .

We impose for K that xᵀAkᵀQAkx ≤ sup
x∈X in

xᵀQx = µ(Q) for all k ≥ K .

We have to exhibit a lower bound on integers k:

‖A‖2k
2 ≤ µ(Q)λmax(Q)−1µ(Id)−1

Using ln, if ‖A‖22 < 1 we get :

k ≥ ln(µ(Q)λmax(Q)−1µ(Id)−1)
ln(‖A‖22)
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Construction of K

Needs a Lyapunov function

Two remarks:
• The assumption ‖A‖2 < 1 is very restrictive.
• We have to check whether

ln(µ(Q)λmax(Q)−1µ(Id)−1) ≥ 0 ⇐⇒ µ(Q)λmax(Q)µ(Id) ≤ 1
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Construction of K

Needs a Lyapunov function

The condition ρ(A) < 1 the existence of a matrix norm ‖ · ‖ such that ‖A‖ < 1.
Let P such that P � 0 and P − AᵀPA � 0 (exists since ρ(A) < 1).
Then x 7→

√
xᵀPx is a norm over Rd and then ‖A‖2P = supx∈Rd\{0}

xᵀAᵀPAx
xᵀPx

is a matrix norm.

Proposition
0 < ‖A‖P < 1 and µ(Q)µ(P)−1λmax(Q)λmin(P)−1.

Proof.
From Weyl’s inequalities i.e. for symmetric matrices M,N :

λk (M) + λmin(N) ≤ λk (M + N) ≤ λk (M) + λmax(N)

and ρ(A) ≤ ‖A‖P .
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Construction of K

Final integers

Let P a solution of the discrete Lyapunov equation:

K = E
[
ln(µ(Q)µ(P)−1λmax(Q)λmin(P)−1)

ln(‖A‖2P)

]
+ 1

or using Rayleigh quotient:

K1 = E
[
ln(µ(Q)µ(P)−1λmax(P−1/2QP−1/2))

ln(‖A‖2P)

]
+ 1

We can define for a given t > 0, a matrix P such that tP � Q and
P − AᵀPA � 0:

Kt = E
[
ln(µ(Q)µ(P)−1t−1)

ln(‖A‖2P)

]
+ 1
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Solving the examples

Example - Discretisation of Harmonic Oscillator
Let recall the first example:(

x0
v0

)
∈ [0, 1]2,

(
xk+1
vk+1

)
=
(

1 h
−h 1− h

)(
xk
vk

)
We choose t = λmax(Q) for Kt .

• Boundedness:
For Q = Id, K = 169, K1 = 169, Kt = 133.

Max ‖(xk , vk )‖2 = 2 at k = 0 for (x0, v0) = (1, 1);
• Maximal value of xk?

For Q =
(
1 0
0 0

)
, K = 296, K1 = 188, Kt = 230.

Max=1.6489 at k = 61 for vector =(1,1);The property xk ≤ 1 is false.
• Maximal value of vk?

For Q =
(
0 0
0 1

)
, K = 296, K1 = 261, Kt = 228.

Max=1 at k = 0 for vector =(1,1);
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Solving the examples

Example - Leaving the loop

In the second example the data are

X in = [1, 2]2, A =
(
0.5 −0.4
1 −0.5

)
and Q = Id .

To apply the previous method we have to replace µ(Q) by 1 in K , K1 and Kt .

Indeed, we constructed K such that sup
x∈X in

xᵀAkᵀQAkx ≤ µ(Q) for all k ≥ K .

Here we are interested in the first k̄ such that sup
x∈X in

xᵀAk̄ᵀQAk̄x ≤ 1.

For example, we compute

K = E
[
ln(µ(P)−1λmax(Q)λmin(P)−1)

ln(‖A‖2P)

]
+ 1 = 11

The modified K1 = 11 and the modified Kt = 281.

We can take the smallest integer thus 11.
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Benchmarks

Experiments

Let us test the Matlab code.
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Future works

Optimize the integers

The integers K ,K1,Kt can be big.

We should solve a minimization problem where P the a decision variable.

Start by solving the problem

Min{‖A‖P | P � 0}

+ The function P 7→ ‖A‖P is quasi-convex;
+ Bounded from below by ρ(A);
− The constraints set is not closed.
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Future works

About affine and non-linear dynamics

• Affine case :
• Lift-and-Project (allow 1 as eigenvalue);
• Use the closed form for xk = Akx0 +

∑k−1
j=0 Aj b.

• Non-linear dynamics :
• Norm operator Lyapunov functions ;
• Non-linear spectral radii (warning well-defined on pointed cones) or joint

spectral radii.
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Conclusion

Conclusion

• Succeed to solve exactly optimization problems over reachable values
constraints set with a finite number of evaluations.

• Succeed to compute global stopping criteria for stable linear systems and
ellipsoidal properties.
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