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USING TRIPLE INTEGRAL CONTROL 
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The uniqueness of this program aims at the development of an autonomous platform that 

costs less than a single parabolic flight, and can provide appropriate reduced-
gravity environments to students, research institutions, and private organizations.  

MicroG 
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Parabolic flights enable the study of physical systems in reduced gravity conditions 
 

1e-6 m/s2 

1.315 M/S2  

1.622 M/S2  

3.711 M/S2 

Why do we care about parabolic flights? 

Lunar Research 

Martian Research 

9.807 M/S2 

Microgravity Research 

europa Research 

Physical processes, as we 
know them, behave very 

differently under the 
absence of a gravitational 

field.  
 

For example, flames 
propagate spherically due to 
negligible buoyancy forces.  
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Review of Prior art 
A 22 year-old unsolved challenge 
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[3]  Hofmeister, Paul Gerke, and Jürgen Blum. "Parabolic flights@ home." Microgravity Science and Technology 23.2 (2011): 191-197.  
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[5]  Johnson Space Center, "Unmanned Microgravity Flight Program". Biennial Research and Technology Development Report, December 2011,  
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WHAT DID we LEARN? 
WHAT DO THESE PREVIOUS ATTEPMTS HAVE IN COMMON? 

 

-	22	YEARS	OF	EFFORTS	EMPLOYING	THE	SAME	CONTROL	ARCHITECTURE	
-	FLAW	REVEALED	AT	THE	LEVEL	OF	MODEL	BASED	DESIGN	

Deviation occurs due to a disturbance with 
parabolic growth 

 
After an Overview of “Type 3” systems, 
one could say that the type of control 
law employed did not eat it’s cheerios. 
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Servo Control 

Single Motor 

Drive Shaft variable pitch Belt driven 

Control Firmware Symmetric Blades 

Lidar 

GPS Speed Governor 
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Why variable-Pitch Propulsion? 
What makes variable pitch sexy for parabolic maneuvers? 

Most	of	us	are	familiar	with	fixed-pitch	
mul6-rotors,	but	what	makes	the	
unconven6onal	variable-pitch	system	a	
be=er	fit	for	parabolic	maneuvers?	

Increased	control	bandwidth	and	disturbance	rejec3on.		
-OperaFng	at	constant	RPM	implies	faster	response	over	convenFonal	fixed	
pitch	configuraFon	due	to	rotaFonal	inerFa	of	motor-propeller	combinaFon	
-Fast	response	improves	precision	and	tracking	

Posi3ve	and	nega3ve	thrust	enables	dynamic	inversion	of	the	
drag	disturbance	for	both	sides	of	the	parabolic	maneuver	
-We	need	to	fight	disturbances	on	the	way	up	and	on	the	way	down!!	

Control	authority	is	independent	of	thrust.		
-We	tried	fixed	pitch…	the	results	were	amusing!	
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Why variable-Pitch Propulsion? 
What makes variable pitch sexy for parabolic maneuvers? 
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Model Based Design 
Framework 
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Model-Based Design Framework 
Fully identified-ish  system 

Servo  
dynamics 

Forces , Moments & 
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Model-Based Design Framework 
Forces , Moments & 

IDENTIFIED PARAMETERS 

Servo  
DEADBAND 

Aero  
Models 

Servo  
dynamics 

RIGID BODY 
EOM ACTUATOR  
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Autonomy State transition logic for autonomous maneuver 

AUTOMATA Maneuver 
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Safety Real time fault detection logic 

Belt Slip or Servo Fault GeoFence 

h_ps://youtu.be/J5tkTEnAiyA	
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Analysis of free fall maneuvers 
Reduced-G maneuvering and the triple integral control law 
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The	verFcal	velocity	dynamics	of	a	flying	vehicle,	with	sensing	and	actuaFon,	evolve	according	to	
	
	
	
	
	
	
	
	
	
	
We	are	interested	in	enabling	a	free-fall	type	maneuver	in	which	the	vehicle	accelerates	downward	with	a	
constant	desired	accelera6on	𝑎𝑑	>	0,	resulFng	in	a	linearly	increasing	velocity	𝑣	=	𝑎𝑑𝑡	≥	0.	
	
	àGoal:	Provide	automaFc	compensa6on	of	the	naturally	occurring	drag	force	through	dynamic	inversion	
	

When	𝑎𝑑	=	1𝑔,	the	goal	is	indeed	free	fall.		,	the	goal	is	indeed	free	fall.		
	

Pirq Control law Analysis of an ideal free-fall maneuver 
D / v2
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Pirq Control law 

Consider	an	ideal	trajectory	trajectory	with	
	
	
The	output	of	the	propulsive	system	needs	to	be		
	
	
The	state												and	input												trajectories	corresponding	
to	this	quadraFc	output													are	also	quadraFc,	with	the	
form:	
	
	
	
where	each	coefficient	is	determined	by	enforcing:	
	
	
	
	

Analysis of an ideal free-fall maneuver 

The	state	and	input	of	Gp(s)	provide	dynamic	
inversion	of	the	quadraFc	disturbance.		
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The	transfer	funcFon	of	this	PIRQ	(ProporFonal-
Integral-Ramp-QuadraFc)	controller	is	
	
	
	
	
with	state	space	realizaFon	
	
	
	
	
	
	
	
where	the	PIRQ	coefficients	are	all	posiFve	(and	
subject	to	some	stability	condiFons	)	

Pirq Control law 
The	required	quadraFc	input												for	the	drag	
compensated	maneuver	should	be	provided	by	the	
controller	output												under	zero	input	
	
	
	
	
	
This	can	be	accomplished	using	a	chain	of	three	
integrators,	providing	constant	(or	step),	linear	(or	
ramp),	and	quadraFc	components	in	its	output	under	
zero	input	condiFons.		
	

Analysis of an ideal free-fall maneuver 
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Pirq Control law Analysis of an ideal free-fall maneuver 
With	zero	input,	the	controller	state	has	the	form	
	
	
	
	
Note	that	by	equaFng	the	controller	output	with	the	maneuver	
actuator	input,	we	find	the	required	controller’s	I.C.	
	
	
	
	
	
	
This	shows	that	the	controller	and	actuator	are	capable	of	
providing		the	necessary	signals	to	compensate	the	drag	in	an	
ideal	maneuver.	
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This	control	system	can	be	used	to	determine,	in	a	
feedback	manner,	the	internal	trajectory	leading	to	
asymptoFc	rejecFon	of	the	disturbance																		
without	knowledge	of					(or	even						)	
	
Here											provides	an	internal	model	for	the	
(idealized	maneuver	drag)	disturbance					.		
	
AsymptoFc	disturbance	rejecFon	is	obtained	for	the	
linear	feedback	system	provided	that										stabilizes	
the	feedback	loop,	possible	when															and										
are	exponen7ally	stable	and	minimum	phase.	This	is	
accomplished	by	choosing	the	locaFon	of	the	zeros		
	
	
	
and	the	gain								to	bring	the	three	compensator	
poles	(at				)	into	the	open	lep	half	plane.	
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Frequency	response	of	the	uncontrolled	loop-gain	

Loop-Shaping  
Although	the	tracking	performance	analysis	should	involve	only	
the	forward	gain																			,	the	forward	gain																													
was	employed	bearing	in	mind	that	the	dynamic	range	of	the	
accelerometer	largely	exceeds	that	of	the	eventual	closed-loop	
system	bandwidth.		
	
	
	
	
	
	
	
	
	
	
	

C(s)Gp(s)Ga(s)C(s)Gp(s)Ga(s)

For	the	compensated	linear	system																																				
-	While	the	gain	slope	of	-60	dB/dec	at	low	frequencies	
ensures	ability	of	rejecFng	quadraFc	disturbance,	
-There	exists	no	gain	that	yields	posiFve	phase	margin.	
	

KpGp(s)Ga(s)/s
3

-300

-200

-100

0

M
ag

ni
tu

de
 (d

B)

100 101 102 103
-720
-540
-360
-180

0

Ph
as

e 
(d

eg
)

 

Frequency  (rad/s)

5.94 rad/s, -32.8 dB

Implementation 

This	is	addressed	by	the	introducFon	of	three	zeros.	
The	choice	of	zeros	is	dependent	upon	the	desired	
bandwidth	and	should	consider	high-frequency	
sensor	noise	a_enuaFon.		

Frequency	response	of	the	compensated	linear	system	
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The	compensated	loop-gain	now	displays	desirable	properFes,	
including	a	posiFve	phase	margin	from	3	to	90	rad/sec.	
Furthermore,	the	range	of	Kp	for	which	closed-loop	stability	is	
possible	can	be	seen	in	the	corresponding	root-locus	

AlternaFng	between	flight	tests	and	design,	the	crossover	
frequency	was	placed	at	5.94	rad/sec		
-Results	based	on	our	idenFfied	linear	system	
-ResulFng	in	a	phase	margin	of	46.3	deg.		
-It	is	suspected	that	the	actual	system's	phase	margin	is	higher	
than	this,	but	with	a	discrepancy	due	to	modeling	uncertainty.	
	
The	compensated	loop	gain	was	adjusted	by	factor	of	32.8	dB.		

10.5	<	Kp	<	562	stabilizes	the	linear	system.	

5.94 rad/s 

C(s) =
kP s3 + kIs2 + kRs+ kQ

s3

kP	=	0.40		|		kI	=	6.40		|		kR	=		30.40		|		kQ	=	38.40	

Frequency	response	of	the	compensated	linear	system	
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The Martian Maneuver 

I would like to die on mars… 
                ...just not on impact. 
                                   -Elon Musk 
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On July 14th, 2017, OUR TEAM PERFORMED  
THE first autonomous REDUCED-g parabola   

 

h_ps://youtu.be/-sSCuPzgb3g	



AUTONOMOUS	PARABOLIC	LABORATORY	 24	

The accuracy of experimental parabola contained tolerances 
within ±0.1G for a period of approximately 1.5 seconds, with a 

mean of 0.3804 and standard deviation of 0.0426.  
 

Martian Maneuver  

Martian Temporal Parabola Error Analysis 

Effect	from	not	reseung	integrators	–	We	have	hybrid	system	work	to	do	during	toss-fall	transiFon	
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Here,	we	note	that	
	
	
is	a	trajectory	of	the	system.		
	
-Trajectory:	is	a	curve	traced	out	in	our	state	space	
by	our	desired	maneuver.	
	
-Invariant	curve	of	the	dynamics	in	the	state	space.	

Pirq Control law Maneuver  

In	reality,	the	drag	disturbance	is	not	ideal,		
	
	
	
	
	
	

but	dependent	on	the	velocity	state	v		
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Note:	while	the	linear	feedback	loop	has	
been	stabilized	by	the	PIRQ	controller,	the	
injecFon	of	the	nonlinear	feedback	−bv2	into	

the	loop	may	cause	trouble!	

(1)

(2)

(v, xp, xc, xa)(t) = (adt, x̃p(t), x̃c(t), x̃a)
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And	tangenFal	coordinates	evolving	at	the	same	
rate	as	Fme	when	on	the	maneuver.		
	
	

Transverse Coordinates 
What	we	would	like	is	to	make	the	desired	
maneuver	exponen3ally	a>rac3ve.	
	
-  																						is	monotonically	increasing	

(for														),		
-  we	may	use	its	inverse																													to	

provide	maneuver	parameterizaFon	by				.		
	
								By	defining:	
	
	
We	obtained	the	desired	maneuver		
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żp

żc

ża
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Maneuver as stable invariant set 
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Current WORK 
Automata – stability guarantees across state transition logic  

0r  
Across Hybrid system transitions 
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Thank you 
Please Stay in touch! 

skype.com/jafman33	jafman3@gatech.edu	


