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THE UNIQUENESS OF THIS PROGRAM AIMS AT THE DEVELOPMENT OF AN AUTONOMOUS PLATFORM THAT
COSTS LESS THAN A SINGLE PARABOLIC FLIGHT; AND CAN PROVIDE APPROPRIATE REDUCED-
GRAVITY ENVIRONMENTS TO STUDENTS, RESEARCH INSTITUTIONS, AND PRIVATE ORGANIZATIONS.



WHY DO WE CARE AEOUT PARABOLIC FLIGHTS?

PARABOLIC FLIGHTS ENABLE THE STUDY OF PHYSICAL SYSTEMS IN REDUCED GRAVITY CONDITIONS

PHYSICAL PROCESSES, AS WE

MARTIAN R e KNOW THEM, BEHAVE VERY

DIFFERENTLY UNDER THE
P < ABSENCE OF A GRAVITATIONAL

e | — FIELD.
y, Lunak RESEARCHING ¢ I

., s FOR EXAMPLE, FLAMES
EUROPA RESEARCH , I8 — sy PROPAGATE SPHERICALLY DUE T0
@ e - . NEGLIGIBLE BUOYANCY FORCES.
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WHAT DO THESE PREVIOUS ATTEPMTS HAVE IN COMMON?
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VARIABLE PITCH SERVO CONTROL LIDAR BELT DRIVEN DRIVE SHAFT
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=i WHY VARIABLE-PITCH PROPULSION?

WHAT MAKES VARIABLE PITCH SEXY FOR PARABOLIC MANEUVERS?

Most of us are familiar with fixed-pitch
! multi-rotors,

0.27s ,

Rise Time , - Change voltage
- Change pitch

Increased control bandwidth and disturbance rejection.

-Operating at constant RPM implies faster response over conventional fixed
pitch configuration due to rotational inertia of motor-propeller combination
-Fast response improves precision and tracking

Positive and negative thrust enables dynamic inversion of the

drag disturbance for both sides of the parabolic maneuver
-We need to fight disturbances on the way up and on the way down!!

Control authority is independent of thrust.
-We tried fixed pitch... the results were amusing!
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WHY

WHAT MAKES VARIABLE PITCH SEXY FOR PARABOLIC MANEUVERS?

Drag force effects

" Approaching
Zero-G's
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Parameter Estimate
I 0.0068 (kg - m?)

S o FULLY IDENTIFIED-/SH SYSTEM
CONTROL SERVO AERD FORCES , MOMENTS &

LAWGMODE  DEADBAND MODELS  IDENTIFIED PARAMETERS VISUALIZATION
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entry : ctrl = 6;

Hovering
entry : ctrl = 2;

Rise
entry : ctrl = 3;

MATLAB Function
hfinal = heightToClimb

heightToClimb()>(

Zero G

entry : ctrl = 4;

distanceToFall

Hovering2
entry : ctrl = 2;

AUTOMATA

MATLAB Function

dist = distanceToFall
MATLAB Function
recovery = recoveryOver

STATE TRANSITION LOGIC FOR AUTONOMOUS MANEUVER
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SAFETY REAL TIME FAULT DETECTION LOGIC

Nominal volume Critical volume Geofence — — Desired path
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2
ANALYSIS OF AN IDEAL FREE-FALL MANEUVER D o< v

Acceleration Velocity Altitude

10 15 10 15 10 15
Time (seconds) Time (seconds) Time (seconds)

- Goal: Provide automatic

When a, = 1g, the goal is indeed free fall.



ANALYSIS OF AN IDEAL FREE-FALL MI\NEUVER?7

Consider an ideal trajectory trajectory with
v(t) = aqt
The output of the propulsive system needs to be
Jp(t) = bait* +aqg—g

The state Z,,(¢) and input i, (%) trajectories corresponding
to this quadratic output ¥, (%) are also quadratic, with the
form:

fp(t) = Xy +£U1t—|-.’132t2/2
ﬂp(t) =N +u1t—|-u2t2/2

where each coefficient is determined by enforcing:
Zp(t) = Ap Tp(t) + by Up(¢)

cp Tp(t) = bait® +aq — g

2,2
—ba,dt

1, (T U, (1) T4 ag — ¢
1( ) GP<S> .,/1( ) ’(13 1 L

Lemma 1: Let G(s) = cT(sI — A)~!'b be stable with

G(0) = 1. Then every polynomial output y(¢) = yo + y1t +
-+« 4 yt*/k! can be produced with a corresponding polyno-
mial input u(t) = uo + ut + --- + ek /k! and state x(t) =
X0+ x1t 4+ +xtk [k,

uy = 2ba’

Ty = —2baj A by

u; = 2baj chzjsz

z1 = —2bag (A, b, + cj A, b, A 'by)

uo = 2baj (cp Ay by + (cp Ay %bp)°) + aa—g
zo = —2bag [A,°b, + ¢, A, %by AL %Dy
+ (cp Ay %ty + (cf A, °bp)%) A, by

- Agjlbp (aqg — g)



ANALYSIS OF AN IDEAL FREE-FALL MANEUVER g - g

The required quadratic input %, () for the drag
compensated maneuver should be provided by the
controller output 7.(%) under zero input @.(¢) = 0

(1)

Gp(s)

Yp(t) = ba3t2 +aq—g

v

: C(s)
: !S)
0

Te(t)

-
»

This can be accomplished using a chain of three
integrators, providing constant (or step), linear (or
ramp), and quadratic components in its output under

zero input conditions.
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2,2
—bajt

+ _
aq L C(s) ;(;,,MH(L“ NG

ag—g _ €
n . +

The transfer function of this PIRQ (Proportional-
Integral-Ramp-Quadratic) controller is

A kpSS S ]CIS2 + kgs + kQ

C(s) —
with state space realization
0 1 0 0
A, \ oy | 0 0 1 0
. | 0 0 0 1
| kg kr ki kp |

where the PIRQ coefficients are all positive (and

subject to some stability conditions )



ANALYSIS OF AN IDEAL FREE-FALL MANEUVER

With zero input, the controller state has the form _ .

This control system can be used to determine, in a
qo + Tot + sot?/2 feedback manner, the internal trajectory leading to

To(t) = o + Sot asymptotic rejection of the disturbance —bafi +2

50 without knowledge of ) (or even a)

Note that by equating the controller output with the maneuver

3 . .
actuator input, we find the required controller’s I.C. Here 1/s° provides an internal model for the

(idealized maneuver drag) disturbance 2

N < kg k% — krkg ) I
—lug— —u1 + —— U
kQ kQ kG Asymptotic disturbance rejection is obtained for the
q0 1 kn
Z(0)= | ro | = o (Ul = %Uz) linear feedback system provided that C(s) stabilizes
it 1 the feedback loop, possible when (7,,(s) and G, ()
i kg | are exponentially stable and minimum phase. This is
This shows that the controller and actuator are capable of accomplished by choosing the location of the zeros
providing the necessary signals to compensate the drag in an ki o kg k’Q
ideal maneuver. —ba3t? s7 + ES T ES o
o Y96l o)l (s) +£ O and the gain /<), to bring the three compensator
- B +f poles (at ()) into the open left half plane
g g

Ga(8)




IMPLEMENTATION

Although the tracking

C(s)G,(s), the forward gain C(s)Gp(s)Ga(s)

was employed bearing in mind that the dynamic range of
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For the compensated linear system K,G,(s)G(s)/s”
- While the gain slope of at low frequencies
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This is addressed by the
The choice of zeros is
and should consider high-frequency

sensor noise attenuation.
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-Results based on our identified linear system
-Resulting in a phase margin of 46.3 deg.
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The compensated loop gain was adjusted by factor of 32.8 dB.

kps® + kis® + krs + kg

C(s) = 3
The : k,=0.40 | k =6.40 | k.= 30.40 | k. =38.40
including a from 3 to 90 rad/sec. P == R™ =+ Q~ =%
Furthermore, the for which closed-loop stability is

possible can be seen in the corresponding root-locus
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ONJULY 14TH, 2017, OUR TEAM PERFORMED
THE FIRST AUTONOMOUS REDUCED-G PARABOLA
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https://youtu.be/-sSCuPzgb3g
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MARTIAN MANEUVER
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MARTIAN TEMPORAL PARABOLA ERROR ANALYSIS

THE ACCURACY OF EXPERIMENTAL PARABOLA CONTAINED TOLERANCES
WITHIN +0.16FOR A PERIOD OF APPROXIMATELY 1.5 SECONDS, WITH A
MEAN OF 0.3804 AND STANDARD DEVIATION OF 0.0426.




INTEGRATORS & PARAMETERS

T0 DO: HYBRID SYSTEM DURING TOSS-FALL TRANSITION

— Smart Integrator
— Smart Integratorl
— Smart Integrator2
—control output
—velocity

—rho/2 S cD/m

0.15

0.1

0.05

-0.05 : : : : : -

0.1 4 | . | . ul

| | | | | | |
11.5 12 12.5 K] 13.5 14 14.5

TIME [SEC] AUTONOMOUS PARABOLIC LABORATORY @ @




PIRQ CUNTRUL LAW MANEUVER

In reality, the drag disturbance is not ideal,

aq
Here, we note that
but dependent o the velocity state (v, @p, Ty o )(t) = (aat, Tp(t), Tc(t), Ta)
|S\atrajectory of the system.
. ag—g e -Trajectory: is a curve traced out in our state space
d o
— — by our desired e
g g

Ga(s)e -Invariant curve of the dynamics in the statace.
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What we would like is to make the desired
maneuver exponentially attractive.

~

- ©(t) = agqt is monotonically increasing
(forag > 0),
- we may use itsinverse t(v) = v/ag to

provide maneuver parameterization by .

(Zp(v) = Zp(E(v))
{ Te(v) = Ze(t(v))

T —

By defining:

We obtained the desired maneuver

(v, Zp(V), Ze(v), Zq) = (v,2(v)),v = 0.

Maneuver adapted transverse
coordinates as stable invariant set

And tangential coordinates evolving at the same
rate as time when on the maneuver. 0 = v/ay

0=1+ (1/aq)e p
p=(A—2bag T’ —2bagTs0c")p

O




0= 1+(1/ad)c‘Tp
p=(A—2bag & —2bays %06 )p
=:A(0)p




CURRENT WORK

AUTOMATA — STABILITY GUARANTEES ACROSS STATE TRANSITION LOGIC

OR
ACROSS HYBRID SYSTEM TRANSITIONS
6o,
PTP 20 Omazs
» H » E“'\A ]
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THANK YOU

PLEASE STAY IN TOUCH!

< S

jafman3@gatech.edu skype.com/jafman33



