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The context

Program verification

Program Semantic Specification

Prove formally that the program semantic verifies the specification.
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The Context

@ The constraints representation :

P" = m {x e R": (aj,x) < b}

i€[1,n]
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The redundancies elimination process can be time consuming.
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The problem formulation

We want to approximate IP” by keeping only k < n constraints, such that :
P" C Pk
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P" C Pk

P =L, {x €R": (a;,x) < b},
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The problem formulation
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Pk =L {x €R": (a;,x) < bi},

Yassamine Seladji® and Zheng Qu®. ( 1 DepaPolyhedron Over-approximation for Complexit



The problem formulation

We want to approximate IP” by keeping only k < n constraints, such that :
P" C Pk,

P =, {x €R": (a;,x) < b;},

Pk =L {x €R": (a;,x) < bi},

vol(P¥) — vol(P"),
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The problem formulation

We want to approximate IP" by keeping only k < n constraints, such that :
P" C P¥, with PX is the best approximation of P".

vol(P¥) — vol(P™),
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The problem formulation

We want to approximate IP" by keeping only k < n constraints, such that :
P" C P¥, with PX is the best approximation of P".

vol(P¥) — vol(P™),

vol (PX) — vol(P™),

If vol(P§)<vol(PX) then (P¥) is the best approximation of (P")
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The problem formulation

The best approximation of P” is the polyhedron with minimum volume
associated with a subset with cardinality k.

We need to solve the following combinatorial optimization problem :

min vol(P*) — vol(P")
Scln]
|S|=k
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The discrete approximation

The following combinatorial optimization problem is known to be a hard
problem :

min vol(PX) — vol(P")
Scln]
|S|=k
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The discrete approximation

The following combinatorial optimization problem is known to be a hard
problem :

min vol(PX) — vol(P")
SC[n]
|S|=k
The discrete approximation :
@ Define the volume difference approximation.
@ Define distance functions.

@ Solve the K-median problem.
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The volume difference approximation

Np"(X) = {Zyiai L Yi > 0,y,-((a,-,x> — b,') = 0} .

i=1
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The volume difference approximation

Pk U x+ne"0)) ]

XEFn_Q(P")
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The volume difference approximation

O(P¥) = PX\ U x+ne"(x)} ],

x€F,_o(P™)
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The volume difference approximation

vol(P¥\ P")

vol(O(P¥)\P") = fbd(P,,) minjek dj(x)dx
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The volume difference approximation

o vol(O(PK))\P™) = Joa(pry Minjex dj(x)dx
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The volume difference approximation

o vol(O(PK))\P™) = Joa(pry Minjex dj(x)dx
°

min/ min dj(x)dx
fsfinll bd(Pn) JE€k
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The volume difference approximation

o vol(O(PK))\P™) = Joa(pry Minjex dj(x)dx
°

min/ min dj(x)dx
fsfinll bd(Pn) JE€k

@ approximate
min_vol(PX) — vol(P™)
Sc[n]
|S|=k
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The integration approximation

@ We generate a discrete set X of representative points.
e X is a subset of points uniformly distributed ! over bd(P").

1. The running Shake and Bake Algorithm
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The integration approximation

@ We generate a discrete set X of representative points.
e X is a subset of points uniformly distributed ! over bd(P").

min d;(x :/ min d;(x
el ) ba(pry j€lrl )

1. The running Shake and Bake Algorithm
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The discrete approximation

The initial combinatorial optimization problem :

min vol(P*) — vol(P")
SC[n]
|S|=k
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The discrete approximation

The initial combinatorial optimization problem :

min vol(P*) — vol(P")
SC[n]
|S|=k

Its discrete approximation problem :

min min d;(x)
SC[n j€ln
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The discrete approximation

The initial combinatorial optimization problem :

min vol(P*) — vol(P")
SC[n]
|S|=k

Its discrete approximation problem :

min min d;(x)
SC[n j€ln

X be a discrete subset of P and d(-,-) : [m] x R" — R be a distance
function.
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The distance functions

@ The projective distance :

Mi(x) == argmin{|lx — yl| : y € H;}.

M;(x)

Hyperplane H;
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The distance functions

@ The projective distance :

Mi(x) == argmin{|lx — yl| : y € H;}.

M;(x)

Hyperplane H;

pi(x) = by — (3. x), j € [n],x € bd(P").
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The distance functions

@ The projective distance :

Mi(x) == argmin{|lx — yl| : y € H;}.

M;(x)

Hyperplane H;

pi(x) = by — (31,%), j € [n], x € bd(P").
Where : bd(P") = |J_; (P"( H;) with H; := {x € R" : (a,x) = b;}
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The distance functions

@ The inverse projective distance :

M7 (x) = {y € H; : Mi(y) = x}.

Hyperplane H; Hyperplane H;
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The distance functions

@ The inverse projective distance :

M7 (x) = {y € H; : Mi(y) = x}.

N1 (x)

Hyperplane H; Hyperplane H;

bj — <aj7 X)
max ((a,-, aJ-), O)

5i(x) == , j € [n],x € ri(bd(P™) N H;.

Yassamine Seladji® and Zheng Qu®. ( 1 DepaPolyhedron Over-approximation for Complexit



The distance functions

@ The inverse projective distance :

M7 (x) = {y € Hp: Mi(y) = x}.
N1 (x)

Hyperplane H; Hyperplane H;

s el x € r(bd(P) N .

dj(x) ==

Where :

ri(bd(P")) :Lnj P HA [ U H;

JF#
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The discrete approximation

It's a k-median problem.

X is the set of cities.

The hyperplanes Hy,--- , Hy, is the set facilities .

d(j, x) is the distance between a city x € X and a facility H;.

We apply the algorithm of Jain and Vazirani?, for approximately
solving k-median problems in polynomial time.

2. V. V. Vazirani, Approximation algorithms, Springer-Verlag, 2001
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The experimentation

The experimentation results are based on three criterion :
@ the quality criterion used to evaluate the accuracy.
o the efficiency criterion used to evaluate the execution time.

@ The impact of the K parameter depends on the number of the kept
constraints K .
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The experimentation : the quality criterion

The quality criterion evaluates the added over-approximation.

Program Py Pk

Name VI | N volume K | Inverse Projective | Projective
filter2 4 1 332 35.01 221 39.03 36.62
Dampened_oscillator 4 332 31.78066 | 221 36.6896 41.74
Harmonic_oscillator 6 332 243.07 221 272.71 300.58
1p_iir_9600_2 6 | 372 274 248 366 345 (271)
Linear quadratic_gaussian 7 398 628.14 265 851.149 685.78
Butterworth_low_pass_filter 9 542 3293.69 361 4434.05 4286.32
Observer_based_controller 10 | 500 | Unbounded | 333 11389.06 14710.72
1p_iir_9600_4 10 | 500 | Unbounded | 333 682 613
1p-iir_9600_4_elliptic 10 | 500 | Unbounded | 333 3133 2892
1p_iir_ 9600_6_elliptic 14 | 692 | Unbounded | 461 643387 523225
bs_iir_9600.12000_10_chebyshev | 22 | 1268 | Unbounded | 845 26264 18650
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The experimentation : the quality criterion

The exemple : filter2

FIGURE — The inverse projective

FIGURE — The projective distance .
distance

The exemple : Harmonic oscillator

FIGURE — The inverse projective

F1GURE — The projective distance .
distance
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The experimentation : the efficiency criterion

The efficiency criterion used to evaluate the execution time.

Program Standard analysis K-analysis

Name V| N time K | inverse Projective | Projective
filter2 4 332 0.586s 221 5mb57s 2m44.108s
Dampened_oscillator 4 332 2.080s 221 5m52s 2m29s
Harmonic_oscillator 6 332 0.610s 221 5m45s 2m24.441s
1p_iir 9600_2 6 | 372 | 41.462s | 248 6m52.283s 3m8.179s
Linear_quadratic_gaussian 7 | 398 37mbs | 265 8m25s 3m38.310s
Butterworth_low_pass_filter 9 | 542 | 124m35s | 361 16m30s 7m21.390s
Observer_based_controller 10 | 500 TO 333 13m46s 6m13.019s
1p_iir_9600_4 10 | 500 TO 333 13mb2s 6m11.377s
1p-iir_9600_4_elliptic 10 | 500 TO 333 13m37s 6m17.650s
1p_iir 9600_6_elliptic 14 | 692 TO 461 27m18s 12mb5.430s
bs_iir_9600.12000_10_chebyshev | 22 | 1268 TO 845 TO 44m28.396s
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The experimentation : the impact of the K parameter

Evaluate the impact of the K parameter using the quality of the efficiency
criterion.

Program 1p_iir_9600_2 Butterworth_low_pass_filter
N 372 542
K 50 150 248 300 100 200 300 361
volume 2029 450 345 315 | 1.9 x 10° | 2.4 x 10% | 6.4 x 103 | 4.286 x 103
Execution Time | 3m10.6s | 3m10.2s | 3m8s | 3m9s | 7m36s 7m32s 7m23s 7m21s
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@ How to choose a relevant K taking into account the space dimension.

@ What is the impact of the initial number of constraints on the result
precision.
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Thank you for your attention.

Questions
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