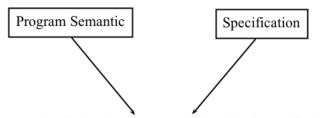
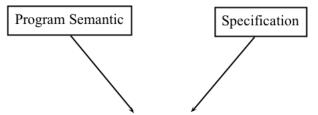
Polyhedron Over-approximation for Complexity Reduction in Static Analysis

Yassamine Seladji¹ and Zheng Qu².

1 Department of Computer Science, The University of Tlemcen. 2 Department of Mathematics, The University of Hong Kong.



Prove formally that the program semantic verifies the specification.



Prove formally that the program semantic verifies the specification.

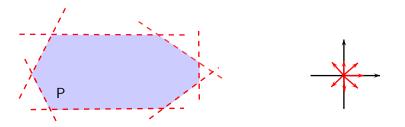
Automatically

• The constraints representation :

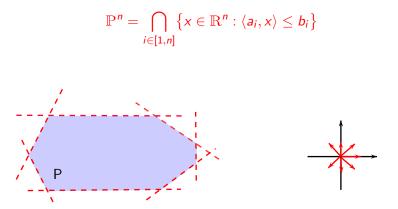
$$\mathbb{P}^n = \bigcap_{i \in [1,n]} \left\{ x \in \mathbb{R}^n : \langle a_i, x \rangle \le b_i \right\}$$

• The constraints representation :

$$\mathbb{P}^n = \bigcap_{i \in [1,n]} \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \le b_i \}$$



• The constraints representation :



The redundancies elimination process can be time consuming.

We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$.

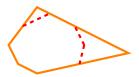
We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$.

$$\bigcirc$$

$$P^n := \bigcap_{i=1}^n \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i \},$$

We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$.

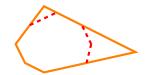
$$P^n := \bigcap_{i=1}^n \{x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i\},\$$



$$P^k := \bigcap_{i=1}^k \{x \in \mathbb{R}^n : \langle a_i, x \rangle \le b_i\},$$

We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$.

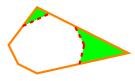
$$P^n := \bigcap_{i=1}^n \{ x \in \mathbb{R}^n : \langle a_i, x \rangle \le b_i \},\$$



$$P^k := \bigcap_{i=1}^k \{x \in \mathbb{R}^n : \langle a_i, x \rangle \leq b_i\},$$

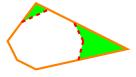
 $vol(P^k) - vol(P^n)$,

We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$, with \mathbb{P}^k is the best approximation of \mathbb{P}^n .



$$vol(P_1^k) - vol(P^n)$$
,

We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$, with \mathbb{P}^k is the best approximation of \mathbb{P}^n .

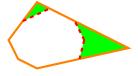


$$vol(P_1^k) - vol(P^n)$$
,

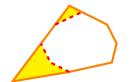


$$vol(P_2^k) - vol(P^n),$$

We want to approximate \mathbb{P}^n by keeping only $k \leq n$ constraints, such that : $\mathbb{P}^n \subseteq \mathbb{P}^k$, with \mathbb{P}^k is the best approximation of \mathbb{P}^n .



$$vol(P_1^k) - vol(P^n)$$
,



$$vol(P_2^k) - vol(P^n)$$
,

If $vol(P_1^k) \leq vol(P_2^k)$ then (P_1^k) is the best approximation of (P^n)

The best approximation of P^n is the polyhedron with minimum volume associated with a subset with cardinality k.

We need to solve the following combinatorial optimization problem :

$$\min_{\substack{S \subset [n] \\ |S|=k}} vol(P^K) - vol(P^n)$$

The following combinatorial optimization problem is known to be a hard problem :

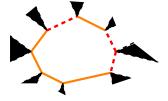
$$\min_{\substack{S \subset [n] \\ |S|=k}} vol(P^K) - vol(P^n)$$

The following combinatorial optimization problem is known to be a hard problem :

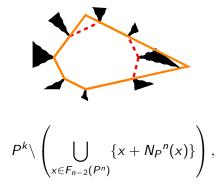
$$\min_{\substack{S \subset [n] \\ S|=k}} vol(P^K) - vol(P^n)$$

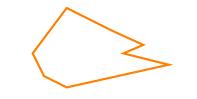
The discrete approximation :

- Define the volume difference approximation.
- Define distance functions.
- Solve the K-median problem.

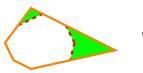


$$N_P{}^n(x) = \left\{\sum_{i=1}^n y_i a_i : y_i \ge 0, y_i(\langle a_i, x \rangle - b_i) = 0\right\}.$$

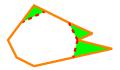




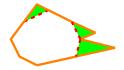
$$O(P^k) = P^k \setminus \left(\bigcup_{x \in F_{n-2}(P^n)} \{x + N_P^n(x)\} \right),$$



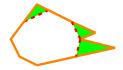
$$vol(P^k ackslash P^n)$$



$$vol(O(P^k) \setminus P^n) = \int_{bd(P^n)} \min_{j \in k} d_j(x) dx$$

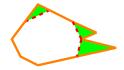


•
$$vol(O(P^k) \setminus P^n) = \int_{bd(P^n)} \min_{j \in k} d_j(x) dx$$



•
$$vol(O(P^k) \setminus P^n) = \int_{bd(P^n)} \min_{j \in k} d_j(x) dx$$

•
$$\min_{\substack{S \subseteq [n] \\ |S| = k}} \int_{bd(P^n)} \min_{j \in k} d_j(x) dx$$



•
$$vol(O(P^k) \setminus P^n) = \int_{bd(P^n)} \min_{j \in k} d_j(x) dx$$

•
$$\min_{\substack{S \subset [n] \\ |S| = k}} \int_{bd(P^n)} \min_{j \in k} d_j(x) dx$$

• approximate

 $\min_{\substack{S \subset [n] \\ |S|=k}} vol(P^K) - vol(P^n)$

- We generate a discrete set X of representative points.
- X is a subset of points uniformly distributed ¹ over $bd(P^n)$.

^{1.} The running Shake and Bake Algorithm

- We generate a discrete set X of representative points.
- X is a subset of points uniformly distributed ¹ over $bd(P^n)$.

$$\sum_{\mathbf{x}\in\mathbf{X}}\min_{j\in[n]}d_j(\mathbf{x})\simeq\int_{bd(P^n)}\min_{j\in[n]}d_j(\mathbf{x})$$

^{1.} The running Shake and Bake Algorithm

Yassamine Seladji 1 and Zheng ${\sf Qu}^2$. (1 DepaPolyhedron Over-approximation for Complexit

The initial combinatorial optimization problem :

$$\min_{\substack{S \subset [n] \\ |S|=k}} vol(P^K) - vol(P^n)$$

The initial combinatorial optimization problem :

$$\min_{\substack{S \subset [n] \\ S|=k}} vol(P^K) - vol(P^n)$$

Its discrete approximation problem :

$$\min_{\substack{S \subset [n] \\ |S|=k}} \sum_{x \in X} \min_{j \in [n]} d_j(x)$$

The initial combinatorial optimization problem :

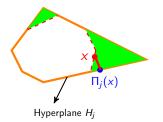
$$\min_{\substack{S \subset [n] \\ S|=k}} vol(P^K) - vol(P^n)$$

Its discrete approximation problem :

$$\min_{\substack{S \subset [n] \\ |S| = k}} \sum_{x \in X} \min_{j \in [n]} d_j(x)$$

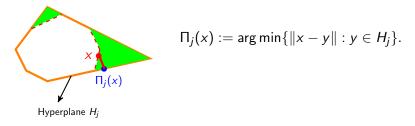
X be a discrete subset of P and $d(\cdot, \cdot) : [m] \times \mathbb{R}^n \to \mathbb{R}_+$ be a distance function.

• The projective distance :



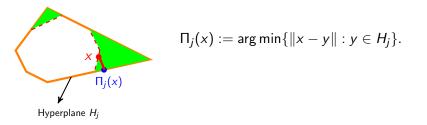
$$\Pi_j(x) := \arg\min\{\|x - y\| : y \in H_j\}.$$

• The projective distance :



$$p_j(x) = b_j - \langle a_j, x \rangle, \ j \in [n], x \in bd(P^n).$$

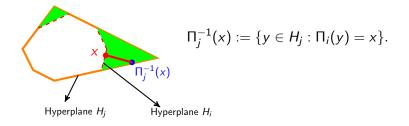
• The projective distance :



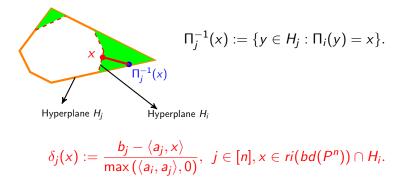
$$p_j(x) = b_j - \langle a_j, x \rangle, \ j \in [n], x \in bd(P^n).$$

Where : $bd(P^n) = \bigcup_{i=1}^n (P^n \cap H_i)$ with $H_i := \{x \in \mathbb{R}^n : \langle a_i, x \rangle = b_i\}$

• The inverse projective distance :



• The inverse projective distance :



• The inverse projective distance :

$$\Pi_{j}^{-1}(x) := \{y \in H_{j} : \Pi_{i}(y) = x\}.$$
Hyperplane H_{i}

$$\delta_{j}(x) := \frac{b_{j} - \langle a_{j}, x \rangle}{\max(\langle a_{i}, a_{j} \rangle, 0)}, \quad j \in [n], x \in ri(bd(P^{n})) \cap H_{i}.$$
Where :
$$n \quad (q = 1)$$

$$ri(bd(P^n)) = \bigcup_{i=1}^n \left(P^n \bigcap H_i \setminus \left(\bigcup_{j \neq i} H_j \right) \right)$$

.

$$\min_{\substack{S \subset [n] \\ |S|=k}} \sum_{x \in X} \min_{j \in [n]} d_j(x)$$

- It's a k-median problem.
- X is the set of cities.
- The hyperplanes H_1, \cdots, H_m is the set facilities .
- d(j, x) is the distance between a city $x \in X$ and a facility H_j .
- We apply the algorithm of Jain and Vazirani², for approximately solving *k*-median problems in polynomial time.

2. V. V. Vazirani, Approximation algorithms, Springer-Verlag, 2001

The experimentation results are based on three criterion :

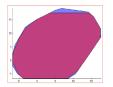
- the quality criterion used to evaluate the accuracy.
- the efficiency criterion used to evaluate the execution time.
- $\bullet\,$ The impact of the K parameter depends on the number of the kept constraints K .

The quality criterion evaluates the added over-approximation.

Program			P _N	Pĸ			
Name	V	N	volume	K	Inverse Projective	Projective	
filter2	4	332	35.91	221	39.03	36.62	
Dampened_oscillator	4	332	31.78066	221	36.6896	41.74	
Harmonic_oscillator	6	332	243.07	221	272.71	300.58	
lp_iir_9600_2	6	372	274	248	366	345 (271)	
Linear_quadratic_gaussian	7	398	628.14	265	851.149	685.78	
Butterworth_low_pass_filter	9	542	3293.69	361	4434.05	4286.32	
Observer_based_controller	10	500	Unbounded	333	11389.06	14710.72	
lp_iir_9600_4	10	500	Unbounded	333	682	613	
lp_iir_9600_4_elliptic	10	500	Unbounded	333	3133	2892	
lp_iir_9600_6_elliptic	14	692	Unbounded	461	643387	523225	
bs_iir_9600_12000_10_chebyshev	22	1268	Unbounded	845	26264	18650	

The experimentation : the quality criterion

The exemple : filter2



 $\ensuremath{\operatorname{FIGURE}}$ – The projective distance

 \mathbf{FIGURE} – The inverse projective distance

The exemple : Harmonic_oscillator

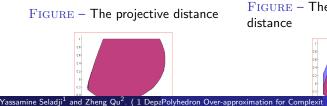


FIGURE – The inverse projective distance

The efficiency criterion used to evaluate the execution time.

Program			Standard analysis		K-analysis			
Name	V	N	time	K	inverse Projective	Projective		
filter2	4	332	0.586s	221	5m57s	2m44.108s		
Dampened_oscillator	4	332	2.080s	221	5m52s	2m29s		
Harmonic_oscillator	6	332	0.610s	221	5m45s	2m24.441s		
lp_iir_9600_2	6	372	41.462s	248	6m52.283s	3m8.179s		
Linear_quadratic_gaussian	7	398	37m5s	265	8m25s	3m38.310s		
Butterworth_low_pass_filter	9	542	124m35s	361	16m30s	7m21.390s		
Observer_based_controller	10	500	то	333	13m46s	6m13.019s		
lp_iir_9600_4	10	500	то	333	13m52s	6m11.377s		
lp_iir_9600_4_elliptic	10	500	то	333	13m37s	6m17.650s		
lp_iir_9600_6_elliptic	14	692	то	461	27m18s	12m5.430s		
bs_iir_9600_12000_10_chebyshev	22	1268	то	845	ТО	44m28.396s		

Evaluate the impact of the K parameter using the quality of the efficiency criterion.

Program	lp_iir_9600_2				Butterworth_low_pass_filter			
N	372				542			
K	50	150	248	300	100	200	300	361
volume	2029	450	345	315	$1.9 imes10^5$	$2.4 imes10^4$	$6.4 imes10^3$	$4.286 imes 10^3$
Execution Time	3m10.6s	3m10.2s	3m8s	3m9s	7m36s	7m32s	7m23s	7m21s

- How to choose a relevant K taking into account the space dimension.
- What is the impact of the initial number of constraints on the result precision.

Thank you for your attention.

