Primitive Floats in Coq

E. Martin-Dorel, P. Roux

Erik Martin-Dorel' Pierre Roux?
with a lot of work from Guillaume Bertholon

LIRIT, Université Paul Sabatier, Toulouse, France

20NERA, Toulouse, France

Thursday 20 June 2019
FEANICSES Workshop

/2

Primitive Floats in Coq

Introduction State of the art Implementation Numerical results Conclusion
@0000 0000000 000000 000 [o]e]

Proofs involving floating-point computations (1/3)

Example (Square root)

@ To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = /a).

2
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
@0000 0000000 000000 000 [o]e]

Proofs involving floating-point computations (1/3)

Example (Square root)

@ To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = /a).

e Using floating-point square root, a # ﬂ(\/cfz)2

2
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
@0000 0000000 000000 000 [o]e]

Proofs involving floating-point computations (1/3)

Example (Square root)

@ To prove that a € R is non negative,
we can exhibit r such that a = r? (typically r = /a).

e Using floating-point square root, a # ﬂ(\/cfz)2

@ but one can subtract appropriate (tiny) ¢, for which:
if fi(v/a — ¢q) succeeds then a is non negative

2
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art

Implementation Numerical results
0e000 0000000

Conclusion
000000 000

(e}

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

@ To prove that a matrix A € R™" is positive semi-definite
we can similarly expose R such that A = RTR

(since 2T (RTR) ¢ = (Rz)T (Rz) = | Rz||2 > 0).

3
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
0e000 0000000 000000 000 [o]e]

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

@ To prove that a matrix A € R™" is positive semi-definite
we can similarly expose R such that A = RTR
(since 2T (RTR) ¢ = (Rz)T (Rz) = | Rz||2 > 0).

@ The Cholesky decomposition computes such a matrix R:

I8 == (F
for j from 1 to n do
for i from 1 to 57 — 1 do

i—1
Ry j = (Am - Zilek,iRk,j) /Rii;
od

1.5 8=
od

3
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
0e000 0000000 000000 000 [o]e]

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

@ To prove that a matrix A € R™" is positive semi-definite
we can similarly expose R such that A = RTR
(since 2T (RTR) ¢ = (Rz)T (Rz) = | Rz||2 > 0).

@ The Cholesky decomposition computes such a matrix R:

R :=0;
for j from 1 to n do

for i from 1 to 57 — 1 do

i—1
Ry j = (Am - Zilek,iRk,j) /Ri i

od

Rj,j =
od

e With rounding errors A # RTR

@ but error is bounded and for some (tiny) c4 € R:
if Cholesky succeeds on A — cy I then A = 0.

3
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00e00 0000000 000000 000 [o]e]

Proofs involving floating-point computations (3/3)

Example (Interval Arithmetic)
e Datatype: interval = pair of (computable) real numbers
e E.g., [3.1415, 3.1416] > =
@ Operations on intervals, e.g., [2,4] — [0,1] :==[2—1,4 — 0] = [1,4],
with the enclosure property: Vx € [2,4], Yy € [0,1], z —y € [1,4].

@ Tool for bounding the range of functions

4
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00e00 0000000 000000 000 [o]e]

Proofs involving floating-point computations (3/3)

Example (Interval Arithmetic)
e Datatype: interval = pair of (computable) real numbers
e E.g., [3.1415, 3.1416] > =
@ Operations on intervals, e.g., [2,4] — [0,1] :==[2—1,4 — 0] = [1,4],
with the enclosure property: Vx € [2,4], Yy € [0,1], z —y € [1,4].
@ Tool for bounding the range of functions
@ In practice, interval arithmetic can be efficiently implemented
with floating-point arithmetic and directed roundings (towards +00).
@ Thus floating-point computations (of interval bounds)
can be used to prove numerical facts.

4
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
000e0 0000000 000000 000 [o]e]

Motivations

@ Coq offers some computation capabilities
~ which can be used in proofs

o Coq already offers efficient integers

Goal of this work
@ Implement primitive computation in Coq with machine binary64 floats

o Instead of emulating floats with integers (about 1000x slower)

5
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

© Introduction

@ State of the art
© mplementation
@ Numerical results

© Conclusion

)

0 Introduction

@ State of the art

© Implementation
@ Numerical results

© Conclusion

)

Introduction State of the art

Implementation
00000 0000000

Numerical results
000000

[e]e]e}

Conclusion
[o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art

Implementation
00000 0000000

Numerical results
000000

[e]e]e}

Conclusion
[o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:
@ Suppose that we want to prove G.

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art

Implementation
00000 0000000

Numerical results
000000

[e]e]e}

Conclusion
[o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:
@ Suppose that we want to prove G.

e We reify G and automatically prove that f(c1,...) = true = G,

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art

Implementation
00000 0000000

Numerical results
000000

[e]e]e}

Conclusion
[o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:
@ Suppose that we want to prove G.
e We reify G and automatically prove that f(cy,

...) =true = G,
e by using a dedicated correctness lemma,

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art

Implementation
00000 0000000

Numerical results
000000

[e]e]e}

Conclusion
[o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:
@ Suppose that we want to prove G.
e We reify G and automatically prove that f(cy,

e by using a dedicated correctness lemma,
e where f is a computable Boolean function.

...) =true = G,

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation

Numerical results Conclusion
00000 9000000 000000 [e]e]e} [o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:
@ Suppose that we want to prove G.
o We reify G and automatically prove that f(cy,.
e by using a dedicated correctness lemma,

e where f is a computable Boolean function.
e So we only have to prove that f(cy,...) = true.

..) = true = G,

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art

Implementation Numerical results
00000 0000000

Conclusion
000000 000

(e}

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:
@ Suppose that we want to prove G.
e We reify G’ and automatically prove that f(cq,.
e by using a dedicated correctness lemma,
e where f is a computable Boolean function.
e So we only have to prove that f(cy,...) = true.
e We evaluate f(cy,...).

..) =true = G,

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 9000000 000000 [e]e]e} [o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:

@ Suppose that we want to prove G.
e We reify G’ and automatically prove that f(cq,.
e by using a dedicated correctness lemma,
e where f is a computable Boolean function.
e So we only have to prove that f(cy,...) = true.
e We evaluate f(cy,...).
o If the computation yields true:

..) =true = G,

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 9000000 000000 [e]e]e} [o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:

@ Suppose that we want to prove G.
e We reify G’ and automatically prove that f(cq,.
e by using a dedicated correctness lemma,
e where f is a computable Boolean function.
e So we only have to prove that f(cy,...) = true.
e We evaluate f(cy,...).
o If the computation yields true:
e This means that the type " f(c1,.
type “true = true".

..) =true = G,

..) = true" is convertible with the

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 9000000 000000 [e]e]e} [o]e]

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment E, if p: A and if A and B are convertible, then p : B. J

So we can perform proofs by reflection:

@ Suppose that we want to prove G.
e We reify G’ and automatically prove that f(cq,.
e by using a dedicated correctness lemma,
e where f is a computable Boolean function.
e So we only have to prove that f(cy,...) = true.
e We evaluate f(cy,...).
o If the computation yields true:
e This means that the type " f(c1,.
type “true = true".
e So we conclude by using reflexivity and the convertibility rule.

..) =true = G,

..) = true" is convertible with the

6
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0@00000 000000 000 [o]e]

Computing with Coq in practice

Three main reduction tactics are available:

1984: compute: reduction machine
2004: vm_compute: virtual machine (byte-code)

2011: native_compute: compilation (native-code)

method ‘ speed ‘ TCB size
compute + +
vm_compute ++ ++

native_compute | +++ | +++

7
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 00e0000 000000 000 [o]e]

Efficient arithmetic in Coq

1994: positive, N, Z ~~ binary integers

2008: bigN, bigZ, bigQ ~~ binary trees of 31-bit machine integers
@ Reference implementation in Coq (using lists of bits)
@ Optimization with processor integers in {vm,native}_compute
@ Implicit assumption that both implementations match

8
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 00e0000 000000 000 [o]e]

Efficient arithmetic in Coq

1994: positive, N, Z ~~ binary integers

2008: bigN, bigZ, bigQ ~~ binary trees of 31-bit machine integers
@ Reference implementation in Coq (using lists of bits)
@ Optimization with processor integers in {vm,native}_compute
@ Implicit assumption that both implementations match

2019: int ~~ unsigned 63-bit machine integers + primitive computation

o Compact representation of integers in the kernel
o Efficient operations available for all reduction strategies
@ Explicit axioms to specify the primitive operations

8
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation

Numerical results Conclusion
00000 0008000 000000 foYele} oo
Floating-Point Values
Definition
A floating-point format F is a subset of R. z € F when

x = mp°¢
for some m, e € Z, |m| < P and emin < € < emax-
9

E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results

00000 0008000 000000 000 g(())nCIUSion
Floating-Point Values
Definition
A floating-point format F is a subset of R. z € F when
x = mp°¢

for some m, e € Z, |m| < P and emin < € < emax-

@ m: mantissa of x @ e: exponent of x

@ [3: radix of F (2 in practice) @ Emin: mMinimal exponent of F

@ p: precision of F @ cmax: maximal exponent of F

9

E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000e00 000000 000 [o]e]

|[EEE 754 standard

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): =2, p =53 and e;,;, = —1074

Binary representation:

T T TTTT T TITITTTTTTTTTITTTTTTTTITITTTTTTTTITTTITTTTITTITITTITTITITTITIT]
sign exponent (11 bits) mantissa (52 bits)

+ Special values: +00 and NaNs (Not A Number, e.g., 0/0 or v/—1)

10
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000e00 000000 000 [o]e]

|[EEE 754 standard

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): =2, p =53 and e;,;, = —1074

Binary representation:

T T TTTT T TITITTTTTTTTTITTTTTTTTITITTTTTTTTITTTITTTTITTITITTITTITITTITIT]
sign exponent (11 bits) mantissa (52 bits)

+ Special values: +00 and NaNs (Not A Number, e.g., 0/0 or v/—1)

Remarks
o two zeros: +0 and —0 (1/ + 0 = 400 whereas 1/ — 0 = —0c0)

10
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000e00 000000 000 [o]e]

|[EEE 754 standard

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): =2, p =53 and e;,;, = —1074

Binary representation:

T T TTTT T TITITTTTTTTTTITTTTTTTTITITTTTTTTTITTTITTTTITTITITTITTITITTITIT]
sign exponent (11 bits) mantissa (52 bits)

+ Special values: +00 and NaNs (Not A Number, e.g., 0/0 or v/—1)

Remarks

o two zeros: +0 and —0 (1/ + 0 = 400 whereas 1/ — 0 = —0c0)
e many NaNs (used to carry error messages)

10
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000e00 000000 000 [o]e]

|[EEE 754 standard

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): =2, p =53 and e;,;, = —1074

Binary representation:

T T TTTT T TITITTTTTTTTTITTTTTTTTITITTTTTTTTITTTITTTTITTITITTITTITITTITIT]
sign exponent (11 bits) mantissa (52 bits)

+ Special values: +00 and NaNs (Not A Number, e.g., 0/0 or v/—1)

Remarks
o two zeros: +0 and —0 (1/ + 0 = 400 whereas 1/ — 0 = —0c0)
e many NaNs (used to carry error messages)
@ +0 = —0 but NaN # NaN (for all NaN)

10
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000080 000000 000 [o]e]

Flocq

Flocq is a Coq library formalizing floating-point arithmetic

e very generic formalization (multi-radix, multi-precision)

@ linked with real numbers of the Coq standard library
@ multiple models available

e without overflow nor underflow
o with underflow (either gradual or abrupt)
o IEEE 754 binary format (used in Compcert)

@ many classical results about roundings and specialized algorithms

o effective numerical computations

It is mainly developed by Sylvie Boldo and Guillaume Melquiond
and available at http://flocq.gforge.inria.fr/

11
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

http://flocq.gforge.inria.fr/

Introduction State of the art Implementation Numerical results Conclusion
00000 000000e 000000 000 [o]e]

Coglnterval

Coqlnterval is a Coq library formalizing interval arithmetic

@ modular formalization involving Coq signatures and modules

@ intervals with floating-point bounds

e radix-2 floating-point numbers (pairs of bigZ, no underflow/overflow)
~ efficient numerical computations

@ support of elementary functions such as exp, 1n and atan. ..

@ tactics (interval, interval_intro) to automatically prove

inequalities on real-valued expressions.

It is mainly developed by Guillaume Melquiond
and available at http://coq-interval.gforge.inria.fr/

12
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

http://coq-interval.gforge.inria.fr/

0 Introduction

© State of the art
© mplementation
@ Numerical results

© Conclusion

L

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 900000 000 [o]e]

Workflow

Define a minimal working interface for the IEEE 754 binary64 format.
Define a fully-specified spec w.r.t. a minimal excerpt of Flocq.

Prepare a compatibility layer that could later be added to Flocq.

©00O0

Implementation for compute, vm_compute and native_compute,
at the OCaml and C levels.

Run some benchmarks.

©

13
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 0@e0000 [e]e]e} (e}

Interface (1/4)

Require Import Floats.
(* contains *)

Parameter float : Set.
Parameter opp : float — float.
Parameter abs : float — float.

Variant float_comparison : Set :=
| FEq | FLt | FGt | FNotComparable.
Variant float_class : Set :=
| PNormal | NNormal | PSubn | NSubn | PZero | NZero
| PInf | NInf | NaN.
Parameter compare : float — float — float_comparison.
Parameter classify : float — float_class.

14
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 008000 [e]e]e} (e}

Interface (2/4)

Parameters mul add sub div : float — float — float.
Parameter sqrt : float — float.
(* The value is rounded if necessary. *)
Parameter of_int63 : Int63.int — float.
(* If input inside [0.5; 1.) then return its mantissa. *)
Parameter normfr_mantissa : float — Int63.int.
Definition shift := (2101)%int63. (* = 2%emax + prec *)
(x frshiftexp £ = (m, e)

s.t. m € [0.5, 1) and f = m * 2" (e-shift) *)
Parameter frshiftexp : float — float * Int63.int.
(* ldshiftexp f e = f * 27 (e-shift) *)
Parameter ldshiftexp : float — Int63.int — float.
Parameter next_up : float — float.
Parameter next_down : float — float.

15
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 000e00 [e]e]e} (e}

Interface (3/4)

Computes but useless for proofs, we need a specification

Inductive spec_float :=
| S754_zero : bool — spec_float
| S754_infinity : bool — spec_float
| S754_nan : spec_float
| S754_finite : bool — positive — Z — spec_float.

Definition SFopp x =
match x with
| S754_zero sx = S754_zero (negb sx)
| S754_infinity sx = S754_infinity (negb sx)
| S754_nan = S754_nan

| S754_finite sx mx ex = S754_finite (negb sx) mx ex
end.

(x ... (mostly borrowed from Flocqg) *)

16
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 000000 000 [o]e]

Interface (4/4)

And axioms to link everything

Definition Prim2SF : float — spec_float.
Definition SF2Prim : spec_float — float.

Axiom FPopp_SFopp :

Vx, Prim2SF (-x)%float = SFopp (Prim2SF x).
Axiom FPmult_SFmult

Vx y, Prim2SF (x * y)%float

= SF64mult (Prim2SF x) (Prim2SF y).
(G)

Not yet implemented:
@ roundToIntegral : mode — float — float

@ convertToIntegral : mode — float — int

17
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 00000e [e]e]e} (e}

Pitfalls

NaNs their payload is hardware-dependent
~> this could easily lead to a proof of False
Comparison do not use IEEE 754 comparison for Leibniz equality
(equates +0 and —0 whereas +0 = 400 and 45 = —oc0)
Primitive int63 are unsigned ~~ requires some care with signed exponents

OCaml floats are boxed ~~ take care of garbage collector in vm_compute
(and unboxed float arrays!)

x87 registers ~~ double roundings (particularly with OCaml on 32 bits)

18
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 00000e 000 [o]e]

Pitfalls

NaNs their payload is hardware-dependent
~> this could easily lead to a proof of False
Comparison do not use IEEE 754 comparison for Leibniz equality
(equates +0 and —0 whereas +0 = 400 and 45 = —oc0)
Primitive int63 are unsigned ~~ requires some care with signed exponents
OCaml floats are boxed ~~ take care of garbage collector in vm_compute
(and unboxed float arrays!)
x87 registers ~~ double roundings (particularly with OCaml on 32 bits)
Parsing and pretty-printing
@ easy solution: hexadecimal (e.g., Oxap-3)
@ ugly and unreadable for humans ~~ decimal (e.g., 1.25)
@ indeed, using 17 digits guarantees parse o print to be
the identity over binary64 (despite parse not injective)
@ decimal notations available in Coq 8.10

18
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

0 Introduction

© State of the art
© Implementation
@ Numerical results

© Conclusion

L

Implementation Numerical results Conclusion
000000 @00 [o]e]

State of the art
0000000

Introduction
00000

Benchmarks (1/3)

[Demo]

@ Measure the elapsed time with/without primitive floats
for a reflexive proof tactic “posdef_check”.

Source ‘ Emulated floats ‘ Primitive floats ‘ Speedup

mat050 | 0.158s +£2.0% 0.008s +0.0% 19.8x
matl00 | 1.162s £1.3% 0.055s £5.8% 21.1x
matl50 | 3.605s +1.2% 0.176s £2.2% 20.5x
mat200 | 8.684s +0.2% 0.407s £1.0% 21.3x
mat250 | 17.143s +£1.3% | 0.801s +£0.3% 21.4x
mat300 | 30.005s £1.2% | 1.366s +£0.7% 22.0x
mat350 | 48.310s +1.3% | 2.146s +0.1% 22.5x
mat400 | 70.193s £1.4% | 3.182s £0.5% 22.1x

@ We'd also like to measure the speed-up so obtained

on the individual arithmetic operations!

E. Martin-Dorel, P. Roux

Primitive Floats in Coq

19/23

Introduction

00000

State of the art
0000000

Implementation
000000

Numerical results
oeo

Benchmarks (2/3) — vm_compute

Conclusion
[o]e]

Emulated floats

Primitive floats

Op Source ‘ CPU times (Opx2—0p) Op time ‘ CPU times (Opx1001—0p) Op time Speedup
add mat200 10.78340.9% — 8.381+2.8% 2.403s 15.7184+0.5% — 0.446+1.1% 0.015s 157.3x
add mat250 21.463+1.7% — 16.4051+1.5% 5.058s 30.622+0.6% — 0.818+0.6% 0.030s 169.7x
add mat300 37.430+1.4% — 28.630+1.4% 8.799s 53.122+2.4% — 1.400£0.5% 0.052s 170.1x
add mat350 59.420+0.8% — 45.945+2.9% 13.475s 84.194+0.8% — 2.190£0.5% 0.082s 164.3x
add mat400 87.783+0.9% — 66.173+1.7% 21.610s 127.56248.5% — 3.21440.3% 0.124s 173.8x
mul mat200 12.2124+1.4% — 8.381+2.8% 3.831s 16.096+3.0% — 0.446+1.1% 0.016s 244 8x
mul mat250 24.517+1.4% — 16.405+1.5% 8.112s 31.118+3.7% — 0.818+0.6% 0.030s 267.7x
mul mat300 42.844+1.7% — 28.630+1.4% 14.214s 53.249+0.8% — 1.400+0.5% 0.052s 274.1x
mul mat350 68.228+1.5% — 45.945+2.9% 22.283s 84.33240.7% — 2.190+£0.5% 0.082s 271.3x
mul mat400 99.722+1.5% — 66.173+1.7% 33.549s 125.742+0.8% — 3.21440.3% 0.123s 273.8x

Table: Computation time for individual operations obtained by subtracting the
CPU time of a normal execution from that of a modified execution where the
specified operation is computed twice (resp. 1001 times). Each timing is
measured 5 times. The table indicates the corresponding average and relative
error among the 5 samples (using vm_compute).

E. Martin-Dorel, P. Roux

Primitive Floats in Coq

20/23

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 000000 ooe [o]e]

Benchmarks (3/3) — native_compute

Emulated floats Primitive floats

Op Source ‘ CPU times (Opx2—0p) Op time ‘ CPU times (Opx1001—0p) Op time Speedup
add mat200 2.243+1.4% — 1.780£1.7% 0.463s 17.681+1.4% — 0.22140.9% 0.017s 26.5x
add mat250 4.486+4.2% — 3.411+3.1% 1.075s 34.290+0.7% — 0.368+£1.5% 0.034s 31.7x
add mat300 7.249+1.2% — 5.825+4.6% 1.424s 59.565+2.5% — 0.553+0.9% 0.059s 24.1x
add mat350 11.66443.8% — 9.2751+3.5% 2.389s 93.818+1.1% — 0.816+£0.8% 0.093s 25.7x
add mat400 17.073£2.9% — 13.14240.9% 3.930s 141.9734+2.6% — 1.18440.9% 0.141s 27.9x
mul mat200 2.478+1.5% — 1.780+1.7% 0.698s 17.807+1.1% — 0.2214+0.9% 0.018s 39.7x
mul mat250 4.82442.4% — 3.4114+3.1% 1.412s 35.144+2.1% — 0.368+1.5% 0.035s 40.6x
mul mat300 8.413+2.4% — 5.825+4.6% 2.588s 60.660+2.2% — 0.553+0.9% 0.060s 43.1x
mul mat350 13.2114+2.4% — 9.275+3.5% 3.937s 97.248+1.0% — 0.816+£0.8% 0.096s 40.8x
mul mat400 19.269+1.5% — 13.14240.9% 6.127s 138.607+2.3% — 1.18440.9% 0.137s 44.6x

Table: Computation time for individual operations obtained by subtracting the
CPU time of a normal execution from that of a modified execution where the
specified operation is computed twice (resp. 1001 times). Each timing is
measured 5 times. The table indicates the corresponding average and relative
error among the 5 samples (using native_compute).

21
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

0 Introduction

© State of the art

© Implementation
@ Numerical results

© Conclusion

R —— s 7

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 000000 000 o0

Concluding remarks

Wrap-up
@ Implementing machine-efficient floats in Coq's low-level layers
@ Focus on binary64 and on portability (IEEE 754, no NaN payloads. . .)
@ Builds on the methodology of primitive integers (~2x / 31-bit retro.)

@ Speedup of at least 150x for addition, 250x for multiplication

22
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

https://github.com/coq/coq/pull/9867

Introduction State of the art Implementation Numerical results

Conclusion
00000 0000000 000000 000

e0

Concluding remarks

Wrap-up
@ Implementing machine-efficient floats in Coq's low-level layers
@ Focus on binary64 and on portability (IEEE 754, no NaN payloads. . .)
@ Builds on the methodology of primitive integers (~2x / 31-bit retro.)
@ Speedup of at least 150x for addition, 250x for multiplication

Discussion and perspectives
@ on-going pull request https://github.com/coq/coq/pull/9867
@ investigate if next_{up,down} could be emulated (and at which cost)

@ nice applications (interval arithmetic with Coq.Interval, other ideas?)

22
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

https://github.com/coq/coq/pull/9867

Introduction State of the art Implementation Numerical results Conclusion
00000 0000000 000000 000 oe

Thank you!

Questions

https://github.com/coq/coq/pull/9867

23
E. Martin-Dorel, P. Roux Primitive Floats in Coq /23

https://github.com/coq/coq/pull/9867

	Introduction
	State of the art
	Implementation
	Numerical results
	Conclusion

