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Proofs involving floating-point computations (1/3)

Example (Square root)
To prove that a ∈ R is non negative,
we can exhibit r such that a = r2 (typically r =

√
a).

Using floating-point square root, a 6= fl
(√
a
)2

but one can subtract appropriate (tiny) ca for which:
if fl
(√
a− ca

)
succeeds then a is non negative
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Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)
To prove that a matrix A ∈ Rn×n is positive semi-definite
we can similarly expose R such that A = RTR

(since xT
(
RTR

)
x = (Rx)T (Rx) = ‖Rx‖22 ≥ 0).

The Cholesky decomposition computes such a matrix R:
R := 0;
for j from 1 to n do

for i from 1 to j − 1 do
Ri,j :=

(
Ai,j − Σi−1

k=1Rk,iRk,j

)
/Ri,i;

od

Rj,j :=
√

Mj,j − Σj−1
k=1Rk,j

2;
od

With rounding errors A 6= RTR

but error is bounded and for some (tiny) cA ∈ R:
if Cholesky succeeds on A− cA I then A � 0.
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Proofs involving floating-point computations (3/3)

Example (Interval Arithmetic)
Datatype: interval = pair of (computable) real numbers
E.g., [3.1415, 3.1416] 3 π
Operations on intervals, e.g., [2, 4]− [0, 1] := [2− 1, 4− 0] = [1, 4],
with the enclosure property: ∀x ∈ [2, 4], ∀y ∈ [0, 1], x− y ∈ [1, 4].
Tool for bounding the range of functions

In practice, interval arithmetic can be efficiently implemented
with floating-point arithmetic and directed roundings (towards ±∞).
Thus floating-point computations (of interval bounds)
can be used to prove numerical facts.
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Motivations

Coq offers some computation capabilities
 which can be used in proofs

Coq already offers efficient integers

Goal of this work
Implement primitive computation in Coq with machine binary64 floats
Instead of emulating floats with integers (about 1000x slower)
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Agenda

1 Introduction

2 State of the art

3 Implementation

4 Numerical results

5 Conclusion
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Coq, computation, and proof by reflection
Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq’s logic: the convertibility rule
In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

Suppose that we want to prove G.
We reify G and automatically prove that f(c1, . . .) = true⇒ G,

by using a dedicated correctness lemma,
where f is a computable Boolean function.
So we only have to prove that f(c1, . . .) = true.

We evaluate f(c1, . . .).
If the computation yields true:

This means that the type “f(c1, . . .) = true” is convertible with the
type “true = true”.
So we conclude by using reflexivity and the convertibility rule.
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Computing with Coq in practice

Three main reduction tactics are available:

1984: compute: reduction machine
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (native-code)

method speed TCB size
compute + +
vm_compute ++ ++
native_compute +++ +++
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Efficient arithmetic in Coq

1994: positive, N, Z  binary integers

2008: bigN, bigZ, bigQ  binary trees of 31-bit machine integers
Reference implementation in Coq (using lists of bits)
Optimization with processor integers in {vm,native}_compute
Implicit assumption that both implementations match

2019: int  unsigned 63-bit machine integers + primitive computation
Compact representation of integers in the kernel
Efficient operations available for all reduction strategies
Explicit axioms to specify the primitive operations
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Floating-Point Values

Definition
A floating-point format F is a subset of R. x ∈ F when

x = mβe

for some m, e ∈ Z, |m| < βp and emin ≤ e ≤ emax.

m: mantissa of x
β: radix of F (2 in practice)
p: precision of F

e: exponent of x
emin: minimal exponent of F
emax: maximal exponent of F
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IEEE 754 standard

The IEEE 754 standard defines floating-point formats and operations.

Example
For binary64 format (type double in C): β = 2, p = 53 and emin = −1074.
Binary representation:

sign exponent (11 bits) mantissa (52 bits)

+ Special values: ±∞ and NaNs (Not A Number, e.g., 0/0 or
√
−1)

Remarks
two zeros: +0 and −0 (1/+ 0 = +∞ whereas 1/− 0 = −∞)
many NaNs (used to carry error messages)
+0 = −0 but NaN 6= NaN (for all NaN)
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Flocq

Flocq is a Coq library formalizing floating-point arithmetic

very generic formalization (multi-radix, multi-precision)
linked with real numbers of the Coq standard library
multiple models available

without overflow nor underflow
with underflow (either gradual or abrupt)
IEEE 754 binary format (used in Compcert)

many classical results about roundings and specialized algorithms
effective numerical computations

It is mainly developed by Sylvie Boldo and Guillaume Melquiond
and available at http://flocq.gforge.inria.fr/
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CoqInterval

CoqInterval is a Coq library formalizing interval arithmetic

modular formalization involving Coq signatures and modules
intervals with floating-point bounds
radix-2 floating-point numbers (pairs of bigZ, no underflow/overflow)

 efficient numerical computations
support of elementary functions such as exp, ln and atan. . .
tactics (interval, interval_intro) to automatically prove
inequalities on real-valued expressions.

It is mainly developed by Guillaume Melquiond
and available at http://coq-interval.gforge.inria.fr/
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Workflow

1 Define a minimal working interface for the IEEE 754 binary64 format.
2 Define a fully-specified spec w.r.t. a minimal excerpt of Flocq.
3 Prepare a compatibility layer that could later be added to Flocq.
4 Implementation for compute, vm_compute and native_compute,

at the OCaml and C levels.
5 Run some benchmarks.
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Interface (1/4)

Require Import Floats.

(* contains *)

Parameter float : Set.
Parameter opp : float → float.
Parameter abs : float → float.

Variant float_comparison : Set :=
| FEq | FLt | FGt | FNotComparable.

Variant float_class : Set :=
| PNormal | NNormal | PSubn | NSubn | PZero | NZero
| PInf | NInf | NaN.

Parameter compare : float → float → float_comparison.
Parameter classify : float → float_class.
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Interface (2/4)

Parameters mul add sub div : float → float → float.
Parameter sqrt : float → float.
(* The value is rounded if necessary. *)
Parameter of_int63 : Int63.int → float.
(* If input inside [0.5; 1.) then return its mantissa. *)
Parameter normfr_mantissa : float → Int63.int.
Definition shift := (2101)%int63. (* = 2*emax + prec *)
(* frshiftexp f = (m, e)

s.t. m ∈ [0.5, 1) and f = m * 2^(e-shift) *)
Parameter frshiftexp : float → float * Int63.int.
(* ldshiftexp f e = f * 2^(e-shift) *)
Parameter ldshiftexp : float → Int63.int → float.
Parameter next_up : float → float.
Parameter next_down : float → float.
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Interface (3/4)
Computes but useless for proofs, we need a specification
Inductive spec_float :=

| S754_zero : bool → spec_float
| S754_infinity : bool → spec_float
| S754_nan : spec_float
| S754_finite : bool → positive → Z → spec_float.

Definition SFopp x :=
match x with
| S754_zero sx ⇒ S754_zero (negb sx)
| S754_infinity sx ⇒ S754_infinity (negb sx)
| S754_nan ⇒ S754_nan
| S754_finite sx mx ex ⇒ S754_finite (negb sx) mx ex
end.

(* ... (mostly borrowed from Flocq) *)
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Interface (4/4)

And axioms to link everything

Definition Prim2SF : float → spec_float.
Definition SF2Prim : spec_float → float.

Axiom FPopp_SFopp :
∀ x, Prim2SF (-x)%float = SFopp (Prim2SF x).

Axiom FPmult_SFmult :
∀ x y, Prim2SF (x * y)%float

= SF64mult (Prim2SF x) (Prim2SF y).
(* ... *)

Not yet implemented:
roundToIntegral : mode → float → float

convertToIntegral : mode → float → int
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Pitfalls

NaNs their payload is hardware-dependent
 this could easily lead to a proof of False

Comparison do not use IEEE 754 comparison for Leibniz equality
(equates +0 and −0 whereas 1

+0 = +∞ and 1
−0 = −∞)

Primitive int63 are unsigned  requires some care with signed exponents
OCaml floats are boxed  take care of garbage collector in vm_compute

(and unboxed float arrays!)
x87 registers  double roundings (particularly with OCaml on 32 bits)

Parsing and pretty-printing
easy solution: hexadecimal (e.g., 0xap-3)
ugly and unreadable for humans  decimal (e.g., 1.25)
indeed, using 17 digits guarantees parse ◦ print to be
the identity over binary64 (despite parse not injective)
decimal notations available in Coq 8.10
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Benchmarks (1/3)
[Demo]

Measure the elapsed time with/without primitive floats
for a reflexive proof tactic “posdef_check”.

Source Emulated floats Primitive floats Speedup

mat050 0.158s ±2.0% 0.008s ±0.0% 19.8x
mat100 1.162s ±1.3% 0.055s ±5.8% 21.1x
mat150 3.605s ±1.2% 0.176s ±2.2% 20.5x
mat200 8.684s ±0.2% 0.407s ±1.0% 21.3x
mat250 17.143s ±1.3% 0.801s ±0.3% 21.4x
mat300 30.005s ±1.2% 1.366s ±0.7% 22.0x
mat350 48.310s ±1.3% 2.146s ±0.1% 22.5x
mat400 70.193s ±1.4% 3.182s ±0.5% 22.1x

We’d also like to measure the speed-up so obtained
on the individual arithmetic operations!
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Benchmarks (2/3) – vm_compute

Op Source Emulated floats Primitive floats SpeedupCPU times (Op×2−Op) Op time CPU times (Op×1001−Op) Op time

add mat200 10.783±0.9% − 8.381±2.8% 2.403s 15.718±0.5% − 0.446±1.1% 0.015s 157.3x
add mat250 21.463±1.7% − 16.405±1.5% 5.058s 30.622±0.6% − 0.818±0.6% 0.030s 169.7x
add mat300 37.430±1.4% − 28.630±1.4% 8.799s 53.122±2.4% − 1.400±0.5% 0.052s 170.1x
add mat350 59.420±0.8% − 45.945±2.9% 13.475s 84.194±0.8% − 2.190±0.5% 0.082s 164.3x
add mat400 87.783±0.9% − 66.173±1.7% 21.610s 127.562±8.5% − 3.214±0.3% 0.124s 173.8x

mul mat200 12.212±1.4% − 8.381±2.8% 3.831s 16.096±3.0% − 0.446±1.1% 0.016s 244.8x
mul mat250 24.517±1.4% − 16.405±1.5% 8.112s 31.118±3.7% − 0.818±0.6% 0.030s 267.7x
mul mat300 42.844±1.7% − 28.630±1.4% 14.214s 53.249±0.8% − 1.400±0.5% 0.052s 274.1x
mul mat350 68.228±1.5% − 45.945±2.9% 22.283s 84.332±0.7% − 2.190±0.5% 0.082s 271.3x
mul mat400 99.722±1.5% − 66.173±1.7% 33.549s 125.742±0.8% − 3.214±0.3% 0.123s 273.8x

Table: Computation time for individual operations obtained by subtracting the
CPU time of a normal execution from that of a modified execution where the
specified operation is computed twice (resp. 1001 times). Each timing is
measured 5 times. The table indicates the corresponding average and relative
error among the 5 samples (using vm_compute).
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Benchmarks (3/3) – native_compute

Op Source Emulated floats Primitive floats SpeedupCPU times (Op×2−Op) Op time CPU times (Op×1001−Op) Op time

add mat200 2.243±1.4% − 1.780±1.7% 0.463s 17.681±1.4% − 0.221±0.9% 0.017s 26.5x
add mat250 4.486±4.2% − 3.411±3.1% 1.075s 34.290±0.7% − 0.368±1.5% 0.034s 31.7x
add mat300 7.249±1.2% − 5.825±4.6% 1.424s 59.565±2.5% − 0.553±0.9% 0.059s 24.1x
add mat350 11.664±3.8% − 9.275±3.5% 2.389s 93.818±1.1% − 0.816±0.8% 0.093s 25.7x
add mat400 17.073±2.9% − 13.142±0.9% 3.930s 141.973±2.6% − 1.184±0.9% 0.141s 27.9x

mul mat200 2.478±1.5% − 1.780±1.7% 0.698s 17.807±1.1% − 0.221±0.9% 0.018s 39.7x
mul mat250 4.824±2.4% − 3.411±3.1% 1.412s 35.144±2.1% − 0.368±1.5% 0.035s 40.6x
mul mat300 8.413±2.4% − 5.825±4.6% 2.588s 60.660±2.2% − 0.553±0.9% 0.060s 43.1x
mul mat350 13.211±2.4% − 9.275±3.5% 3.937s 97.248±1.0% − 0.816±0.8% 0.096s 40.8x
mul mat400 19.269±1.5% − 13.142±0.9% 6.127s 138.607±2.3% − 1.184±0.9% 0.137s 44.6x

Table: Computation time for individual operations obtained by subtracting the
CPU time of a normal execution from that of a modified execution where the
specified operation is computed twice (resp. 1001 times). Each timing is
measured 5 times. The table indicates the corresponding average and relative
error among the 5 samples (using native_compute).
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Concluding remarks

Wrap-up
Implementing machine-efficient floats in Coq’s low-level layers
Focus on binary64 and on portability (IEEE 754, no NaN payloads. . . )
Builds on the methodology of primitive integers (∼2x / 31-bit retro.)
Speedup of at least 150x for addition, 250x for multiplication

Discussion and perspectives
on-going pull request https://github.com/coq/coq/pull/9867

investigate if next_{up,down} could be emulated (and at which cost)
nice applications (interval arithmetic with Coq.Interval, other ideas?)
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Thank you!

Questions

?
https://github.com/coq/coq/pull/9867
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