Primitive Floats in Coq

¹IRIT, Université Paul Sabatier, Toulouse, France

²ONERA, Toulouse, France

Thursday 20 June 2019

FEANICSES Workshop

Proofs involving floating-point computations (1/3)

Example (Square root)

Introduction

•0000

• To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).

Example (Square root)

Introduction

•0000

- To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).
- Using floating-point square root, $a \neq \text{fl}(\sqrt{a})^2$

Example (Square root)

Introduction

•0000

- To prove that $a \in \mathbb{R}$ is non negative, we can exhibit r such that $a = r^2$ (typically $r = \sqrt{a}$).
- Using floating-point square root, $a \neq \text{fl}(\sqrt{a})^2$
- but one can subtract appropriate (tiny) c_a for which: if $f(\sqrt{a-c_a})$ succeeds then a is non negative

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

• To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T \left(R^T R \right) x = \left(Rx \right)^T \left(Rx \right) = \|Rx\|_2^2 \geq 0$).

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

- To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T \left(R^T R \right) x = \left(Rx \right)^T \left(Rx \right) = \|Rx\|_2^2 \geq 0$).
- ullet The Cholesky decomposition computes such a matrix R:

```
\begin{split} R &:= 0; \\ \text{for } j \text{ from 1 to } n \text{ do} \\ \text{for } i \text{ from 1 to } j - 1 \text{ do} \\ R_{i,j} &:= \left( A_{i,j} - \Sigma_{k=1}^{i-1} R_{k,i} R_{k,j} \right) / R_{i,i}; \\ \text{od} \\ R_{j,j} &:= \sqrt{M_{j,j} - \Sigma_{k=1}^{j-1} R_{k,j}^2}; \end{split}
```

Proofs involving floating-point computations (2/3)

Example (Cholesky decomposition)

- To prove that a matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite we can similarly expose R such that $A = R^T R$ (since $x^T (R^T R) x = (Rx)^T (Rx) = ||Rx||_2^2 \ge 0$).
- The Cholesky decomposition computes such a matrix R:

R := 0:

```
for i from 1 to n do
   for i from 1 to j-1 do
     R_{i,j} := \left( A_{i,j} - \sum_{k=1}^{i-1} R_{k,i} R_{k,j} \right) / R_{i,i};
  R_{j,j} := \sqrt{M_{j,j} - \sum_{k=1}^{j-1} R_{k,j}^2};
```

- With rounding errors $A \neq R^T R$
- but error is bounded and for some (tiny) $c_A \in \mathbb{R}$: if Cholesky succeeds on $A - c_A I$ then $A \succeq 0$.

Introduction

Example (Interval Arithmetic)

- Datatype: interval = pair of (computable) real numbers
- E.g., $[3.1415, 3.1416] \ni \pi$
- Operations on intervals, e.g., [2,4] [0,1] := [2-1,4-0] = [1,4], with the enclosure property: $\forall x \in [2,4], \ \forall y \in [0,1], \ x-y \in [1,4]$.
- Tool for bounding the range of functions

Introduction

00000

Example (Interval Arithmetic)

- Datatype: interval = pair of (computable) real numbers
- E.g., $[3.1415, 3.1416] \ni \pi$
- Operations on intervals, e.g., [2,4] [0,1] := [2-1,4-0] = [1,4], with the enclosure property: $\forall x \in [2,4], \ \forall y \in [0,1], \ x-y \in [1,4]$.
- Tool for bounding the range of functions
- In practice, interval arithmetic can be efficiently implemented with floating-point arithmetic and directed roundings (towards $\pm \infty$).
- Thus floating-point computations (of interval bounds) can be used to prove numerical facts.

Introduction

Introduction

- Coq offers some computation capabilities
- → which can be used in proofs
 - Coq already offers efficient integers

Goal of this work

- Implement primitive computation in Coq with machine binary64 floats
- Instead of emulating floats with integers (about 1000x slower)

Agenda

Introduction

00000

- Introduction
- 2 State of the art
- 3 Implementation
- 4 Numerical results
- Conclusion

/ igcliud

- Introduction
- 2 State of the art
- 3 Implementation
- Mumerical results
- Conclusion

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

• Suppose that we want to prove G.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- ullet We reify G and automatically prove that $f(c_1,\ldots)=\mathsf{true}\Rightarrow G$,

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(c_1,\ldots)=\mathsf{true}\Rightarrow G$,
 - by using a dedicated correctness lemma,

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(c_1,\ldots)=\mathsf{true}\Rightarrow G$,
 - by using a dedicated correctness lemma,
 - ullet where f is a computable Boolean function.

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

- Suppose that we want to prove G.
- ullet We reify G and automatically prove that $f(c_1,\ldots)=\mathsf{true}\Rightarrow G$,
 - by using a dedicated correctness lemma,
 - ullet where f is a computable Boolean function.
 - So we only have to prove that $f(c_1,...) = \text{true}$.

Coq, computation, and proof by reflection

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- ullet We reify G and automatically prove that $f(c_1,\ldots)=\mathsf{true}\Rightarrow G$,
 - by using a dedicated correctness lemma,
 - ullet where f is a computable Boolean function.
 - So we only have to prove that $f(c_1,...) = \text{true}$.
- We evaluate $f(c_1, \ldots)$.

Key feature of Coq's logic: the convertibility rule

In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(c_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - ullet where f is a computable Boolean function.
 - So we only have to prove that $f(c_1,...) = \text{true}$.
- We evaluate $f(c_1, \ldots)$.
- If the computation yields true:

 $^{6}/_{23}$

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(c_1, ...) = \text{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function.
 - So we only have to prove that $f(c_1,...) = \text{true}$.
- We evaluate $f(c_1, \ldots)$.
- If the computation yields true:
 - This means that the type " $f(c_1,...)$ = true" is convertible with the type "true = true".

Coq, computation, and proof by reflection

Cog comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule

In environment E, if p:A and if A and B are convertible, then p:B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(c_1, ...) = \text{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function.
 - So we only have to prove that $f(c_1,...) = \text{true}$.
- We evaluate $f(c_1,\ldots)$.
- If the computation yields true:
 - This means that the type " $f(c_1,...)$ = true" is convertible with the type "true = true".
 - So we conclude by using reflexivity and the convertibility rule.

Computing with Coq in practice

Three main reduction tactics are available:

1984: compute: reduction machine

2004: vm_compute: virtual machine (byte-code)

2011: native_compute: compilation (native-code)

method	speed	TCB size
compute	+	+
vm_compute	++	++
native compute	+++	+++

Efficient arithmetic in Coq

1994: positive, N, Z \rightsquigarrow binary integers

2008: bigN, bigZ, bigQ → binary trees of 31-bit machine integers

- Reference implementation in Coq (using lists of bits)
- Optimization with processor integers in {vm,native}_compute
- Implicit assumption that both implementations match

Efficient arithmetic in Coq

- 1994: positive, N, Z \rightsquigarrow binary integers
- 2008: bigN, bigZ, bigQ → binary trees of 31-bit machine integers
 - Reference implementation in Coq (using lists of bits)
 - Optimization with processor integers in {vm,native}_compute
 - Implicit assumption that both implementations match
- 2019: int → unsigned 63-bit machine integers + primitive computation
 - Compact representation of integers in the kernel
 - Efficient operations available for all reduction strategies
 - Explicit axioms to specify the primitive operations

Floating-Point Values

Definition

A floating-point format \mathbb{F} is a subset of \mathbb{R} . $x \in \mathbb{F}$ when

$$x = m\beta^e$$

for some $m, e \in \mathbb{Z}$, $|m| < \beta^p$ and $e_{\min} \le e \le e_{\max}$.

Floating-Point Values

Definition

A floating-point format \mathbb{F} is a subset of \mathbb{R} . $x \in \mathbb{F}$ when

$$x = m\beta^e$$

for some $m, e \in \mathbb{Z}, |m| < \beta^p$ and $e_{\min} \le e \le e_{\max}$.

- \bullet m: mantissa of x
- β : radix of \mathbb{F} (2 in practice)
- p: precision of \mathbb{F}

- e: exponent of x
- e_{\min} : minimal exponent of \mathbb{F}
- e_{\max} : maximal exponent of \mathbb{F}

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): $\beta = 2$, p = 53 and $e_{min} = -1074$.

Binary representation:

exponent (11 bits) mantissa (52 bits) sign

+ Special values: $\pm \infty$ and NaNs (Not A Number, e.g., 0/0 or $\sqrt{-1}$)

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): $\beta = 2$, p = 53 and $e_{min} = -1074$.

Binary representation:

exponent (11 bits) sign mantissa (52 bits)

+ Special values: $\pm \infty$ and NaNs (Not A Number, e.g., 0/0 or $\sqrt{-1}$)

Remarks

• two zeros: +0 and -0 $(1/+0=+\infty$ whereas $1/-0=-\infty$)

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): $\beta = 2$, p = 53 and $e_{min} = -1074$.

Binary representation:

exponent (11 bits) sign mantissa (52 bits)

+ Special values: $\pm \infty$ and NaNs (Not A Number, e.g., 0/0 or $\sqrt{-1}$)

Remarks

- two zeros: +0 and -0 $(1/+0=+\infty$ whereas $1/-0=-\infty$)
- many NaNs (used to carry error messages)

The IEEE 754 standard defines floating-point formats and operations.

Example

For binary64 format (type double in C): $\beta = 2$, p = 53 and $e_{min} = -1074$. Binary representation:

exponent (11 bits) sign mantissa (52 bits)

+ Special values: $\pm \infty$ and NaNs (Not A Number, e.g., 0/0 or $\sqrt{-1}$)

Remarks

- two zeros: +0 and -0 $(1/+0=+\infty$ whereas $1/-0=-\infty$)
- many NaNs (used to carry error messages)
- +0 = -0 but NaN \neq NaN (for all NaN)

Flocq is a Coq library formalizing floating-point arithmetic

- very generic formalization (multi-radix, multi-precision)
- linked with real numbers of the Coq standard library
- multiple models available
 - without overflow nor underflow
 - with underflow (either gradual or abrupt)
 - IEEE 754 binary format (used in Compcert)
- many classical results about roundings and specialized algorithms
- effective numerical computations

It is mainly developed by Sylvie Boldo and Guillaume Melquiond and available at http://flocq.gforge.inria.fr/

 $^{11}/_{23}$

coqiiicoi vai

CoqInterval is a Coq library formalizing interval arithmetic

- modular formalization involving Coq signatures and modules
- intervals with floating-point bounds
- radix-2 floating-point numbers (pairs of bigZ, no underflow/overflow)
- → efficient numerical computations
 - support of elementary functions such as exp, ln and atan...
 - tactics (interval, interval_intro) to automatically prove inequalities on real-valued expressions.

It is mainly developed by Guillaume Melquiond and available at http://coq-interval.gforge.inria.fr/

 $^{12}/_{23}$

- 1 Introduction
- State of the art
- Implementation
- Mumerical results
- Conclusion

- **1** Define a minimal working interface for the IEEE 754 binary64 format.
- Define a fully-specified spec w.r.t. a minimal excerpt of Flocq.
- Prepare a compatibility layer that could later be added to Flocq.
- Implementation for compute, vm_compute and native_compute, at the OCaml and C levels.
- Run some benchmarks.

```
Require Import Floats.
```

```
(* contains *)
```

```
Parameter float : Set.
```

Parameter opp : float \rightarrow float.

Parameter abs : float \rightarrow float.

```
Variant float_comparison : Set :=
```

| FEq | FLt | FGt | FNotComparable.

```
Variant float class : Set :=
```

| PNormal | NNormal | PSubn | NSubn | PZero | NZero

Implementation

000000

```
| PInf | NInf | NaN.
```

Parameter compare : float \rightarrow float_comparison.

Parameter classify : float \rightarrow float class.

Interface (2/4)

Introduction

```
Parameters mul add sub div : float \rightarrow float \rightarrow float.
Parameter sqrt : float \rightarrow float.
(* The value is rounded if necessary. *)
Parameter of int63 : Int63.int \rightarrow float.
(* If input inside [0.5; 1.) then return its mantissa. *)
Parameter normfr mantissa : float \rightarrow Int63.int.
Definition shift := (2101)%int63. (* = 2*emax + prec *)
(* frshiftexp f = (m, e)
   s.t. m \in [0.5, 1) and f = m * 2^{(e-shift)} *)
Parameter frshiftexp : float \rightarrow float * Int63.int.
(* ldshiftexp f e = f * 2^{(e-shift)} *)
Parameter ldshiftexp : float \rightarrow Int63.int \rightarrow float.
Parameter next_up : float \rightarrow float.
Parameter next_down : float → float.
```

Implementation

Interface (3/4)

Introduction

Computes but useless for proofs, we need a specification

```
Inductive spec_float :=
  | S754_zero : bool \rightarrow spec_float
  | S754_infinity : bool \rightarrow spec_float
  | S754_nan : spec_float
  | S754_finite : bool 	o positive 	o Z 	o spec_float.
Definition SFopp x :=
  match x with
  | S754\_zero sx \Rightarrow S754\_zero (negb sx)
  | S754 infinity sx \Rightarrow S754 infinity (negb sx)
  | S754 nan \Rightarrow S754 nan
  | S754 finite sx mx ex \Rightarrow S754 finite (negb sx) mx ex
  end.
(* ... (mostly borrowed from Flocq) *)
```

Implementation

Interface (4/4)

And axioms to link everything

```
Definition Prim2SF : float \rightarrow spec float.
Definition SF2Prim : spec float \rightarrow float.
Axiom FPopp_SFopp :
  \forall x, Prim2SF (-x)%float = SFopp (Prim2SF x).
Axiom FPmult_SFmult :
  \forall x y, Prim2SF (x * y)\%float
          = SF64mult (Prim2SF x) (Prim2SF y).
(* ... *)
```

Implementation

000000

Not yet implemented:

- ullet roundToIntegral : mode o float o float
- ullet convertToIntegral : mode o float o int

NaNs their payload is hardware-dependent this could easily lead to a proof of False Comparison do not use IEEE 754 comparison for Leibniz equality (equates +0 and -0 whereas $\frac{1}{+0} = +\infty$ and $\frac{1}{-0} = -\infty$) Primitive int63 are unsigned \leftrightarrow requires some care with signed exponents OCaml floats are boxed \iff take care of garbage collector in vm compute

 $\times 87$ registers \rightarrow double roundings (particularly with OCaml on 32 bits)

(and unboxed float arrays!)

Pitfalls

NaNs their payload is hardware-dependent ★ this could easily lead to a proof of False

Comparison do not use IEEE 754 comparison for Leibniz equality (equates +0 and -0 whereas $\frac{1}{+0} = +\infty$ and $\frac{1}{-0} = -\infty$)

Primitive int63 are unsigned \leftrightarrow requires some care with signed exponents OCaml floats are boxed \iff take care of garbage collector in vm compute (and unboxed float arrays!)

 $\times 87$ registers \rightarrow double roundings (particularly with OCaml on 32 bits)

Parsing and pretty-printing

- easy solution: hexadecimal (e.g., 0xap-3)
- ugly and unreadable for humans

 → decimal (e.g., 1.25)
- indeed, using 17 digits guarantees $parse \circ print$ to be the identity over binary64 (despite parse not injective)
- decimal notations available in Cog 8.10

Agenda

- Introduction
- State of the art
- 3 Implementation
- 4 Numerical results
- Conclusion

Benchmarks (1/3)

[Demo]

 Measure the elapsed time with/without primitive floats for a reflexive proof tactic "posdef check".

Source	Emulated floats	Primitive floats	Speedup
mat050	$0.158s \pm 2.0\%$	0.008s ±0.0%	19.8x
mat100	1.162 s $\pm 1.3\%$	$0.055s \pm 5.8\%$	21.1x
mat150	$3.605s \pm 1.2\%$	$0.176s \pm 2.2\%$	20.5×
mat200	$8.684s \pm 0.2\%$	$0.407s \pm 1.0\%$	21.3x
mat250	17.143s $\pm 1.3\%$	$0.801s \pm 0.3\%$	21.4x
mat300	30.005 s $\pm 1.2\%$	$1.366s \pm 0.7\%$	22.0x
mat350	48.310s $\pm 1.3\%$	$2.146s \pm 0.1\%$	22.5×
mat400	70.193s $\pm 1.4\%$	$3.182s \pm 0.5\%$	22.1x

 We'd also like to measure the speed-up so obtained on the individual arithmetic operations!

É. Martin-Dorel, P. Roux Primitive Floats in Cod

Ор	Source	Emulated floats CPU times (Op $\times 2$ -Op)	Op time	$ \begin{array}{c c} & \text{Primitive floats} \\ & \text{CPU times (Op}{\times}1001{-}\text{Op)} \end{array} $	Op time	Speedup
add	mat200	$10.783 \pm 0.9\% - 8.381 \pm 2.8\%$	2.403s	15.718±0.5% - 0.446±1.1%	0.015s	157.3×
add	mat250	$21.463\pm1.7\% - 16.405\pm1.5\%$	5.058s	$30.622\pm0.6\% - 0.818\pm0.6\%$	0.030s	169.7×
add	mat300	$37.430\pm1.4\% - 28.630\pm1.4\%$	8.799s	$53.122\pm2.4\% - 1.400\pm0.5\%$	0.052s	170.1×
add	mat350	$59.420\pm0.8\% - 45.945\pm2.9\%$	13.475s	$84.194\pm0.8\% - 2.190\pm0.5\%$	0.082s	164.3×
add	mat400	$87.783\pm0.9\% - 66.173\pm1.7\%$	21.610s	$127.562\pm8.5\% - 3.214\pm0.3\%$	0.124s	173.8×
mul	mat200	12.212±1.4% - 8.381±2.8%	3.831s	16.096±3.0% - 0.446±1.1%	0.016s	244.8×
mul	mat250	$24.517 \pm 1.4\% - 16.405 \pm 1.5\%$	8.112s	$31.118\pm3.7\% - 0.818\pm0.6\%$	0.030s	267.7×
mul	mat300	$42.844 \pm 1.7\% - 28.630 \pm 1.4\%$	14.214s	$53.249\pm0.8\% - 1.400\pm0.5\%$	0.052s	274.1×
mul	mat350	$68.228\pm1.5\% - 45.945\pm2.9\%$	22.283s	$84.332\pm0.7\% - 2.190\pm0.5\%$	0.082s	271.3×
mul	mat400	$99.722 \pm 1.5\% - 66.173 \pm 1.7\%$	33.549s	$125.742\pm0.8\% - 3.214\pm0.3\%$	0.123s	273.8×

Table: Computation time for individual operations obtained by subtracting the CPU time of a normal execution from that of a modified execution where the specified operation is computed twice (resp. 1001 times). Each timing is measured 5 times. The table indicates the corresponding average and relative error among the 5 samples (using vm_compute).

 $^{20}/_{23}$

É. Martin-Dorel, P. Roux

Ор	Source	Emulated floats CPU times $(Op \times 2 - Op)$	Op time		Op time	Speedup
add add add add	mat200 mat250 mat300 mat350	2.243±1.4% - 1.780±1.7% 4.486±4.2% - 3.411±3.1% 7.249±1.2% - 5.825±4.6% 11.664±3.8% - 9.275±3.5%	0.463s 1.075s 1.424s 2.389s	17.681±1.4% - 0.221±0.9% 34.290±0.7% - 0.368±1.5% 59.565±2.5% - 0.553±0.9% 93.818±1.1% - 0.816±0.8%	0.017s 0.034s 0.059s 0.093s	26.5x 31.7x 24.1x 25.7x
add	mat400	$17.073\pm2.9\% - 9.275\pm3.5\%$ $17.073\pm2.9\% - 13.142\pm0.9\%$	3.930s	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.093s 0.141s	27.9x
mul mul mul mul mul	mat200 mat250 mat300 mat350 mat400	$\begin{array}{c} 2.478\!\pm\!1.5\% - 1.780\!\pm\!1.7\% \\ 4.824\!\pm\!2.4\% - 3.411\!\pm\!3.1\% \\ 8.413\!\pm\!2.4\% - 5.825\!\pm\!4.6\% \\ 13.211\!\pm\!2.4\% - 9.275\!\pm\!3.5\% \\ 19.269\!\pm\!1.5\% - 13.142\!\pm\!0.9\% \end{array}$	0.698s 1.412s 2.588s 3.937s 6.127s	$\begin{array}{l} 17.807{\pm}1.1\% - 0.221{\pm}0.9\% \\ 35.144{\pm}2.1\% - 0.368{\pm}1.5\% \\ 60.660{\pm}2.2\% - 0.553{\pm}0.9\% \\ 97.248{\pm}1.0\% - 0.816{\pm}0.8\% \\ 138.607{\pm}2.3\% - 1.184{\pm}0.9\% \end{array}$	0.018s 0.035s 0.060s 0.096s 0.137s	39.7× 40.6× 43.1× 40.8× 44.6×

Table: Computation time for individual operations obtained by subtracting the CPU time of a normal execution from that of a modified execution where the specified operation is computed twice (resp. 1001 times). Each timing is measured 5 times. The table indicates the corresponding average and relative error among the 5 samples (using native_compute).

 $^{21}/_{23}$

É. Martin-Dorel, P. Roux

Agenda

- Introduction
- State of the art
- 3 Implementation
- Mumerical results
- Conclusion

Conclusion

Concluding remarks

Wrap-up

- Implementing machine-efficient floats in Coq's low-level layers
- Focus on binary64 and on portability (IEEE 754, no NaN payloads...)
- Builds on the methodology of primitive integers (\sim 2x / 31-bit retro.)
- Speedup of at least 150x for addition, 250x for multiplication

Concluding remarks

Wrap-up

- Implementing machine-efficient floats in Coq's low-level layers
- Focus on binary64 and on portability (IEEE 754, no NaN payloads. . .)
- Builds on the methodology of primitive integers (\sim 2x / 31-bit retro.)
- Speedup of at least 150x for addition, 250x for multiplication

Discussion and perspectives

- on-going pull request https://github.com/coq/coq/pull/9867
- investigate if next_{up,down} could be emulated (and at which cost)
- nice applications (interval arithmetic with Coq.Interval, other ideas?)

 $^{22}/_{23}$

Questions

https://github.com/coq/coq/pull/9867