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1From Colin Jones’ Control Systems 1 slides at EPFL.
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Explicit vs. Implicit MPC

θ

min
x,δ

f(θ, x, δ) s.t.

g(θ, x, δ) = 0,

h(θ, x, δ) ∈ K,
δ ∈ Im.

Ax+ b x∗ control decision

x∗ control decision

Implicit MPC

Binary tree lookup

Affine evaluation

Current state

Explicit MPC is required where safety & speed
rule out on-line optimization
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Algorithm Flowchart

MICP // Optimization problem oracle

Feasible partition // We’ll talk about this first [1]...

Success? FAIL

ε-suboptimal partition // ...and then about this [2]

Success?

pwa(θ)

FAIL

// Optimization-free control law

Yes

No

Yes

No
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Outline

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Approximate Multiparametric Mixed-integer Convex Programming
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Template Optimization Problem

V ∗(θ) = min
x,δ

f(θ, x, δ) s.t. (1a)

g(θ, x, δ) = 0, (1b)

h(θ, x, δ) ∈ K, (1c)

δ ∈ Im. (1d)

I Multiparametric mixed-integer conic program (MICP)

I f(θ, x, δ) : Rp × Rn × Im → R jointly convex in θ and x

I {g, h}(θ, x, δ) : Rp × Rn × Im → R{ng,nh} affine in θ and x

I K = K1 × · · · × K2 × · · · convex cone (non-negative orthant, second-order cone,
semidefinite cone, etc.)

I Difficult/slow to solve!
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Fixed-commutation Version

V ∗δ (θ) = min
x

f(θ, x, δ) s.t. (2a)

g(θ, x, δ) = 0, (2b)

h(θ, x, δ) ∈ K. (2c)

I Multiparametric conic program (CP)

I Commutation δ ∈ Im is fixed (i.e. chosen)

I Two questions: how to choose δ such that...

1. ... Problem 2 is feasible?
2. ... V ∗δ (θ) = V ∗(θ) (i.e. the optimal cost is achieved)?

In this presentation we answer these two questions
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Definitions

Definition 1
The feasible parameter set Θ∗ ⊂ Rp is the set of all θ parameters for which the MICP is
feasible.

Θ∗
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Definitions

Definition 2
The fixed-commutation feasible parameter set Θ∗δ ⊂ Rp is the set of all θ parameters for which
the fixed-commutation CP is feasible. Θ∗δ is convex.

Θ∗(0,0)

Θ∗(0,1)

Θ∗(1,0)

Θ∗(1,1)
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Definitions

Definition 3
The feasible commutation map fδ : Θ∗ → Im maps θ ∈ Θ∗ to a commutation δ such that
θ ∈ Θ∗δ (i.e. the fixed-commutation CP is feasible for this θ).

Θ∗(0,0)

Θ∗(0,1)

Θ∗(1,0)

Θ∗(1,1)

θ

fδ(θ) = (1, 0) or (0, 1)
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Objective

I Compute fδ over a subset of its domain Θ ⊆ Θ∗

I Typically, choose Θ as an invariant set
I fδ will seed the computation of the explicit control law

Θ∗

Θ
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General Idea

I Generate a simplicial partition R = {(Ri, δi)}|R|i=1 such that
I Θ =

⋃|R|
i=1Ri

I δi is feasible everywhere in Ri, i.e Ri ⊆ Θ∗δi

Θ∗
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Brute Force Approach

Algorithm 1 Brute force fδ computation.

1: R ← ∅, Θ̄← Θ
2: for all δ ∈ Im do
3: R ← {(R′, δ) : R′ ∈ Θ̄ ∩Θ∗δ} ∪ R
4: Θ̄← Θ̄ \Θ∗δ
5: if Θ̄ = ∅ then
6: STOP

I Exploit convexity of Θ∗δ
I Inner-approximation algorithm exists [3]
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Desirable Algorithm Properties

Disadvantages of brute force:

I No attempt to go around the combinatorial complexity

I Inner approximation of Θ∗δ is very slow in high dimensions

I Polytopic set intersection and set difference are numerically poor

A better algorithm:

I Explores all δ ∈ Im combinations only in the worst case

I Minimizes vertex count

I Only uses numerically robust operations

Our algorithm achieves these properties by:

I Solving a MICP to find a feasible δ for a current subset

I Using simplex partition cells

I Doing everything in vertex representation
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Proposed Algorithm

Algorithm 2 Proposed computation of fδ.

1: Create empty tree with open leaf Θ as root
2: Triangulate Θ (delaunay)
3: while any non-leaf node exists do
4: R ← most recently added node
5: if MICP (1) infeasible for θ = cR then
6: STOP, (Θ∗)c ∩Θ 6= ∅
7: else
8: δ̂ ← solve (3)
9: if (3) is infeasible then

10: Split R in half along longest edge
11: else
12: Replace with leaf (R, δ̂)

I Key idea: checking if R ⊆ Θ∗δ is a MICP

Lemma 4
R ⊆ Θ∗δ ⇔ the fixed-commutation CP is
feasible at all vertices of R.

δ(R) = find δ s.t. (3a)

g(θ, xθ, δ) = 0, ∀θ ∈ V(R), (3b)

h(θ, xθ, δ) ∈ K, ∀θ ∈ V(R), (3c)

δ ∈ Im. (3d)
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Convergence Properties

Definition 4
Let ∆ , {δ ∈ Im : Θ∗δ ∩Θ 6= ∅}. The largest value κ ∈ R+ such that ∀θ ∈ Θ ∃δ ∈ ∆ such
that (κB + θ) \ (Θ∗ ∩Θ)c ⊆ Θ∗δ is called the overlap.

Assumption 1
The overlap is positive, i.e. κ > 0.

Θ∗0

Θ∗1

(a) Bad situation: κ = 0.

Θ∗0

Θ∗1

(b) Good situation: κ > 0.

Figure: Illustration of zero (bad) and positive (good) overlap.
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What Happens When the Overlap is Zero?

(a) Bad situation: κ = 0. (b) Good situation: κ > 0.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e.
quasi-always) does not converge if κ = 0.
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Guaranteed Convergence for Non-Zero Overlap

Theorem 5
If the overlap is positive then our algorithm
either converges or fails in a finite number of
iterations.

Lemma 6
If the overlap is zero, our algorithm generally
(read: almost always) does not converge.

Figure: Illustration of failure in a finite number of
iterations.
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Partition Complexity

Recall:

I Partition is stored as a binary tree

I Parameter θ ∈ Rp

Theorem 7
The worst-case partition tree depth τ is O(p2 log(κ−1)).

Corollary 8
The worst-case tree leaf count η is O(2p

2 log(κ−1)).

Theorem 9
The on-line evaluation complexity of fδ is O(p4), i.e. polynomial time.
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Illustrative Example

Multiple DOF controllable oscillator [1]:

Mr̈ + Cṙ +Kr = Lu. (3)
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Outline

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Approximate Multiparametric Mixed-integer Convex Programming
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Definitions

Definition 10
The suboptimal commutation map f εδ : Θ∗ → Im associates θ ∈ Θ∗ to an ε-suboptimal
commutation δ such that

V ∗δ (θ)− V ∗(θ) < max{εa, εrV ∗(θ)}, (4)

where εa and εr are the absolute and relative errors.

θ
ε-suboptimal

Absolute suboptimality

Relative suboptimality

V ∗δ (θ)

V ∗(θ)
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Checking if δ is ε-suboptimal

V ∗δ (θ)− V ∗(θ) < max{εa, εrV ∗(θ)}. (5)

I If (8) does not hold, then the following is feasible:

δ∗, θ∗ = find
θ∈R

δ′ s.t. (6a)

V ∗δ (θ)− V ∗δ′(θ) ≥ max{εa, εrV ∗δ′(θ)}. (6b)

I Since (6b) is non-convex, use a convex approximation:

δ∗, θ∗ = find
θ∈R

δ′ s.t. (7a)

V̄δ(θ)− V ∗δ′(θ) ≥ max{εa, εrV ∗δ′(θ)}. (7b)

θ

V̄δ(θ)

V ∗δ (θ)

Affine over-approximator:

V̄δ(θ) ,
|V(R)|∑
i=1

αiV
∗
δ (vi).
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Checking if δ is ε-suboptimal

V ∗δ (θ)− V ∗(θ) < max{εa, εrV ∗(θ)}. (8)

I To prevent oscillations, ensure δ∗ is feasible over R:

δ∗, θ∗ = find
θ∈R

δ′ s.t. (9a)

V̄δ(θ)− V ∗δ′(θ) ≥ max{εa, εrV ∗δ′(θ)}, (9b)

δ′ ∈ {δ′′ ∈ Im \ {δ} : R ⊆ Θ∗δ′′}. (9c)

I To prevent excessive partitioning, only partition when:

max
θ∈R

V ∗δ (θ)−min
θ∈R

V ∗δ (θ) < max{εa, εrV ∗δ∗(θ∗)}, (10)

θ

V̄δ(θ)

V ∗δ (θ)

Affine over-approximator:

V̄δ(θ) ,
|V(R)|∑
i=1

αiV
∗
δ (vi).
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Partitioning Algorithm

Algorithm 3 Computation of f εδ .

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do
3: (R, δ)← most recently added node
4: if (7) infeasible then
5: Change node to leaf
6: else
7: δ∗, θ∗ ← solve (9)
8: if (9) feasible and (10) holds then
9: Change node to (R, δ∗)

10: else
11: δ∗ ← δ if (10) infeasible
12: Split R in half along longest edge
13: Add nodes using δ∗
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Optimal Cost Approximation as Piecewise-Affine Function
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Parallelization opportunity
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Explicit Implementation

x̂ =

|V(R)|∑
j=1

αjx
∗
j where θ =

|V(R)|∑
j=1

αjvj , vj ∈ V(R).

R

V̄δ(θ)

α1 α2

α3

v1
v2

v3

θ

Explicit implementation = binary tree
search + (Ax+ b) evaluation
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Convergence Properties

Definition 11
The overlap is the largest γ ≥ 0 such that for each θ ∈ Θ, ∃δ ∈ ∆ which is ε-suboptimal in
(γB + θ) \Θc.

Assumption 2
The overlap is positive, i.e. γ > 0.
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Convergence Properties

Theorem 12
Our algorithm converges if and only if the overlap is positive.

Theorem 13
The worst-case partition tree depth τ is O(p2 log(γ−1)).2

Theorem 14
The evaluation complexity of f εδ is O(p4), i.e. polynomial time.

2In fact, fixed-commutation cost function gradients also need to be considered, see [2, Definition 6].
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Illustrative Example

Clohessy-Wilstshire-Hill dynamics [2]:

cwh xy:

{
ẍ = 3ω2

0x+ 2ωoẏ + ux + wx,
ÿ = −2ωoẋ+ uy + wu,

cwh z: z̈ = −ω2
oz + uz + wz,

Example sa εr τ λ Twall [hr] Tcpu [hr] M [MB]

cwh_z 0.50 2.00 13 101 0.01 0.09 < 0.01
cwh_z 0.25 1.00 17 978 0.06 0.96 < 0.01
cwh_z 0.10 0.10 20 13500 0.31 7.72 11
cwh_z 0.03 0.05 26 235231 1.91 154.19 202
cwh_z 0.01 0.01 31 3322941 6.37 2516.98 2916
cwh_xy 0.50 2.00 32 30448 0.57 53.44 36
cwh_xy 0.25 1.00 49 884323 3.38 1297.35 1069
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Partitioning Progress Plot

I Python 3.7.2

I CVXPY 1.0.21

I MOSEK 9.0.87

I MPICH 3.2

I CentOS 7

I Up to 1120 processors
(20 nodes × 28
cores/node)

I Cote = 2.4 GHz Intel
E5-2680, 20 GB RAM

Platform: UW Hyak
supercomputer
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Partition Complexity
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Control History

(a) Input 2-norm history for cwh z with sa = 0.5
and εr = 2.

(b) Input 2-norm history for cwh z with
sa = 0.01 and εr = 0.01.

Figure: Comparison of control input histories for a coarse and a refined ε-suboptimal partition. By
reducing εa and εr, explicit MPC approaches the behavior of implicit MPC.
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Control Performance

cwh z cwh xy
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(a) MPC on-line evaluation time. Bars show the
mean while error bars shown the minimum and
maximum values.
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(b) Overconsumption of fuel with respect to
implicit MPC due to ε-suboptimality. Implicit
MPC uses ≈ 4 mm/s over 20 orbits.

Figure: Comparison of the proposed semi-explicit and explicit implementations to implicit MPC in
terms of (a) on-line control input computation time and (b) total fuel consumption over 20 orbits.
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