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Model Predictive Control (MPC)

LFrom Colin Jones’ Control Systems 1 slides at EPFL.
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Explicit vs. Implicit MPC

mién f(0,x,0) s.t.

9(0,2,0) =0, —————————— 2* control decision
h(0,z,0) € K,
6 el™.

Implicit MPC
Explicit MPC is required where safety & speed
rule out on-line optimization

9_.

Current state

Ax +b ——— z* control decision

Affine evaluation

Binary tree lookup
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Algorithm Flowchart

MICP // Optimization problem oracle

| Feasible partition | // We'll talk about this first [1]...

@ No FaiL

e-suboptimal partition ‘ // ...and then about this [2]

N
@ 2+ FAIL

pwa(#) // Optimization-free control law

5/37



Outline

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC
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Template Optimization Problem

V*(0) :r£1}g1 f(0,2,9) s.t. (1a)
9(0,2,6) =0, (1b)
h,z,0) € K, (1c)
selm. (1d)

» Multiparametric mixed-integer conic program (MICP)

> f(0,x,0) : R? x R® x I"™ — R jointly convex in 6 and z

> {g,h}(0,z,0) : R? x R* x I'™ — Rimon} affine in 6 and =

> =K1 XX Kg X -+ convex cone (non-negative orthant, second-order cone,
semidefinite cone, etc.)

v

Difficult/slow to solve!
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Fixed-commutation Version

V() :mzin f(0,2,9) s.t. (2a)
9(0,2,6) =0, (2b)
ho,z,8) € K. (2¢)

» Multiparametric conic program (CP)
» Commutation § € I"™ is fixed (i.e. chosen)

» Two questions: how to choose § such that...

1. ... Problem 2 is feasible?
2. ... V§'(0) = V*(0) (i.e. the optimal cost is achieved)?

In this presentation we answer these two questions
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Definitions

Definition 1
The feasible parameter set ©* C RP is the set of all # parameters for which the MICP is
feasible.
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Definitions

Definition 2
The fixed-commutation feasible parameter set ©5 C RP is the set of all § parameters for which
the fixed-commutation CP is feasible. ©j is convex.
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Definitions

Definition 3
The feasible commutation map f5 : ©* — 1" maps 6 € ©* to a commutation § such that
6 € O (i.e. the fixed-commutation CP is feasible for this ).

(1,0 ©f0.0)

[ 1SS

@z(l,l) ®>(k0,1) f5(9) = (1’0) or (O’ 1)
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Objective

» Compute fs5 over a subset of its domain © C ©*
» Typically, choose © as an invariant set
» fs will seed the computation of the explicit control law

@*

@
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General Idea

> Generate a simplicial partition R = {(Rz,éz)}lzll such that
> o =UEF R,
> 0; is feasible everywhere in R;, i.e R; C O3,

(__)*
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]
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N e m - - - = A
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Brute Force Approach

> Exploit convexity of O}

» Inner-approximation algorithm exists [3]

Algorithm 1 Brute force fs5 computation.
LR+ 0,0«06
2: for all § € I do
3 R+ {(R,§):Re€ONOIUR
4. (:) — (:) \ @E
5: if © =0 then
6 STOP
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Brute Force Approach

Algorithm 1 Brute force fs5 computation.

L. R<0 6+06
2: for all § € I"™ do

3:

4:
5:
6

R+ {(R',6): RN €eONOIUR
0+ 0\ 06;
if © = ( then

STOP
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Brute Force Approach

Algorithm 1 Brute force f5 computation.

L. R<0 6+06
2: for all 6 € I do

R+ {(R,6):R' €®NOL}UR

3:

42 O+ 6\o6;
5: if © = () then
6 STOP
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Desirable Algorithm Properties

Disadvantages of brute force:

> No attempt to go around the combinatorial complexity
» Inner approximation of O is very slow in high dimensions
» Polytopic set intersection and set difference are numerically poor

A better algorithm:

» Explores all § € Z™ combinations only in the worst case
» Minimizes vertex count
» Only uses numerically robust operations

Our algorithm achieves these properties by:

» Solving a MICP to find a feasible § for a current subset
P Using simplex partition cells
» Doing everything in vertex representation
Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC 15/37



Proposed Algorithm

Algorithm 2 Proposed computation of f;s.
1: Create empty tree with open leaf © as root Lemma 4

2. Triangulate © (delaunay) R C O} & the fixed-commutation CP is
3: while any non-leaf node exists do feasible at all vertices of R.

4 R < most recently added node

5. if MICP (1) infeasible for § = c® then

6 STOP, (67)°N 6 #0 5(R) =find § s.t.

7: else

8: 6 « solve (3) g(0,29,0) =0, V0e€V(R),
o: if (3) is infeasible then h(0,29,8) € KC, VO € V(R),
10: Split R in half along longest edge seIm

11: else '

12: Replace with leaf (R, )

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC
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Proposed Algorithm

Algorithm 2 Proposed computation of f;s.

1: Create empty tree with open leaf © as root
2: Triangulate © (delaunay)
3: while any non-leaf node exists do

4 R < most recently added node

5. if MICP (1) infeasible for § = c® then

6: STOP, (6*)°N O # 0

7 else :
8: 5 + solve (3) | :
o: if (3) is infeasible then a I
10: Split R in half along longest edge \ i
11: else Al b
12: Replace with leaf (R, )
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Convergence Properties

Definition 4
Let A2 {§€I™:0;NO # 0}. The largest value x € Ry such that V0 € © 3§ € A such

that (kB + 0) \ (©* N ©)° C O is called the overlap.

Assumption 1
The overlap is positive, i.e. kK > 0.

(a) Bad situation: k = 0. (b) Good situation: k > 0.

Figure: lllustration of zero (bad) and positive (good) overlap.
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What Happens When the Overlap is Zero?

(a) Bad situation: k = 0. (b) Good situation: k > 0.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e.
quasi-always) does not converge if K = 0.
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Guaranteed Convergence for Non-Zero Overlap

Theorem 5

If the overlap is positive then our algorithm
either converges or fails in a finite number of
iterations.

Lemma 6
If the overlap is zero, our algorithm generally
(read: almost always) does not converge.

Figure: lllustration of failure in a finite number of
iterations.
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Partition Complexity

Recall:

» Partition is stored as a binary tree
» Parameter 6 € R?

Theorem 7
The worst-case partition tree depth T is O(p*log(k™1)).

Corollary 8

The worst-case tree leaf count 1 is O(2°" 1°e(x 1)),

Theorem 9
The on-line evaluation complexity of f5 is O(p*), i.e. polynomial time.
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lllustrative Example

Multiple DOF controllable oscillator [1]:

M7+ Cr + Kr = Lu.
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Outline

Approximate Multiparametric Mixed-integer Convex Programming

Approximate Multiparametric Mixed-integer Convex Programming 22/37



Definitions

Definition 10

The suboptimal commutation map f§ : ©° — I"* associates # € ©* to an e-suboptimal

commutation ¢ such that

Vi (0) — V*(0) < max{ea, &, V*(0)}, (4)

where €, and ¢, are the absolute and relative errors.
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Checking if § is e-suboptimal

V5" (0) — V*(0) < max{e,, & V*(0)}. (5) ]

> If (8) does not hold, then the following is feasible:

§*,0" =find & s.t. (6a)
0ER
V5 (0) = V5 (0) = max{ea, e Vi (0)}- (6b)

» Since (6b) is non-convex, use a convex approximation:

§*,0* =find & s.t (7a) Affine over-approximator:
’ 0eR o
V5(68) — Vi (6) > max{ea, &, Vi (0)}. 7b B V(R)]
5(0) = V5 (0) = max{ 5 (0)} (7b) HOE S aly ).
i=1

Approximate Multiparametric Mixed-integer Convex Programming 24/37



Checking if § is e-suboptimal

V5(0) — V*(0) < max{ea, &, V*(0)}.

» To prevent oscillations, ensure §* is feasible over R:
§*,0* =find ¢ s.t.
0eR

Vs(0) — Vii(0) > max{ea, & V5 (0)},
(5/ c {6” S m \ {5} R g @g//}.

» To prevent excessive partitioning, only partition when:

max V() — min V5’ (9) < max{ea, & V5- (67},

Approximate Multiparametric Mixed-integer Convex Programming

(9a)
(9b)
(9)

Vs (9)
0

Affine over-approximator:

V(R)|

i=1

= Z a; Vs (v;).
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Checking if § is e-suboptimal

-~

V5(0) — V*(0) < max{ea, &, V*(0)}. (8)
» To prevent oscillations, ensure §* is feasible over R: 4
5*,0" =find &’ s.t. (9a)
0eR
Vs(0) = Vi (0) = max{es, & V5 (6)}, (9b) - ¢
§ye{d el™\{§}:RC O} (9¢)

. o . Affine over-approximator:
» To prevent excessive partitioning, only partition when:

S . ) V(R)|
max V() — min V5’ (9) < max{es, &V5.(07)},  (10) Vs0) 2 S Vi (v).
=1
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Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do
3: (R,0) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: d*,0* < solve (9)

8: if (9) feasible and (10) holds then
9: Change node to (R, §*)

10: else

11: 0% < § if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do

3: (R,d) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: 0*,6* «+ solve (9)

8: if (9) feasible and (10) holds then
o: Change node to (R, §*)

10: else

11: 0% < ¢ if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do

3: (R,0) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: 0*,6* «+ solve (9)

8: if (9) feasible and (10) holds then
o: Change node to (R, §*)

10: else

11: 0% < ¢ if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do

3: (R,0) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: 0%, 0% < solve (9)

8: if (9) feasible and (10) holds then
o: Change node to (R, §*)

10: else

11: 0% < § if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do
3: (R,0) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: 5%, 6% < solve (9)

8: if (9) feasible and (10) holds then
9: Change node to (R, §*)

10: else

11: 0% < § if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do
3: (R,0) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: d*,0* < solve (9)

8: if (9) feasible and (10) holds then
9: Change node to (R, §*)

10: else

11: 0% < § if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Partitioning Algorithm

Algorithm 3 Computation of f.

1: Create feasible partition (Algorithm 2)
2: while any nodes exist do
3: (R,0) < most recently added node

4: if (7) infeasible then

5: Change node to leaf

6: else

7: d*,0* < solve (9)

8: if (9) feasible and (10) holds then
9: Change node to (R, §*)

10: else

11: 0% < § if (10) infeasible

12: Split R in half along longest edge
13: Add nodes using §*

Approximate Multiparametric Mixed-integer Convex Programming 26/37



Optimal Cost Approximation as Piecewise-Affine Function
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Parallelization opportunity

000000000000000000000000
000000000000000000000000
00000000000000000000000O0
000000000000000000000000
000000000000000000000000

00000000000 0OOOOOOOO0OOO0OCO Algorithm 2 Proposed computation of f5.
000000000000000000000000 1: Create empty tree with open leaf © as root
00000000000000000000000O0 2 Triangulate © (delaunay)
000000000000000000000000 3: while any non-leaf node exists do

000000000000000000000000 4 ‘R < most recently added node
00000000000 0OOOOOOOOOOOOO . i i i _ (R
000000000000000000000000 . "N'S'%P(lz(_')'lg?.aﬂlz_')ef&” o then
000000000000000000000000 RO . else '
00000000000 00O0O0OOOO0OOO0O0O - s
0000000000000000000000O0O0 o
00000000000 0000O0OO0O0O0O00O0O
00000000000000000000000O0
00000000000 OOOOOOOOOOOOCO
0000000000000000000000O0O
00000000000 0OO0OOOOOOOOOOO
00000000000 0OO0OOOOOO0OOOOCO
000000000000000000000000
00000000000 00O0O0OO0OO0OO0O0O
000000000000000000O00OO00O0O

Master process Slave processes

0 + solve (3)

if (3) is infeasible then

10: Split R in half along longest edge
11: else

12: Replace with leaf (R, 4)
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Explicit Implementation

VR V(R)|
i = Zajm where 6 = ZO‘JUJ’ v; € V(R).

Explicit implementation = binary tree
search + (Az + b) evaluation
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Convergence Properties

Definition 11
The overlap is the largest v > 0 such that for each 6 € ©, 3§ € A which is e-suboptimal in

(vB+6)\06°.

Assumption 2
The overlap is positive, i.e. v > 0.

f ._/V* " ._/V’i )

v > OFH . Q v > O\_/_\u Q =0 > 4
= - = L | »> X >
& e-subopt. &' e-subopt. 0 e-subopt. ¢’ e-subopt. 0 e-subopt. ¢’ e-subopt.
(a) (b) (c)
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Convergence Properties

Theorem 12

Our algorithm converges if and only if the overlap is positive.
Theorem 13

The worst-case partition tree depth T is O(p?log(y~1)).2
Theorem 14

The evaluation complexity of f5 is O(p*), i.e. polynomial time.

2|n fact, fixed-commutation cost function gradients also need to be considered, see [2, Definition 6].
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lllustrative Example

Clohessy-Wilstshire-Hill dynamics [2]:

& = 3wdx + 2wol) + Uy + W
cwh xy: 4. 0% - 2oy + Uy + Wa
Y= —2WoT + Uy + Wy,
.oz 2
cwh z: Zz=—-w)z+u,+w,, |
u = {0} U Ui:l U;
Example Sa €r T A Twan [hr] Tepu [hr] M [MB]
cwh_z 0.50 2.00 13 101 0.01 0.09 < 0.01
cwh_z 0.25 1.00 17 978 0.06 0.96 < 0.01
cwh_z 0.10 0.10 20 13500 0.31 7.72 11
cwh_z 0.03 0.05 26 235231 1.91 154.19 202
cwh_z 0.01 0.01 31 3322941 6.37 2516.98 2916
cwh_xy 0.50 2.00 32 30448 0.57 53.44 36
cwh_xy 0.25 1.00 49 884323 3.38 1297.35 1069
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Partitioning Progress Plot
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Partition Complexity
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Control History

80 X * implicit 80 1

X . 5r
X oxx  %ex Ko X x o explicit
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Number of orbits

Number of orbits

(a) Input 2-norm history for cwh_z with s, = 0.5 (b) Input 2-norm history for cwh_z with
and e, = 2. 52 = 0.01 and €¢; = 0.01.

Figure: Comparison of control input histories for a coarse and a refined e-suboptimal partition. By
reducing €, and ¢,, explicit MPC approaches the behavior of implicit MPC.
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Control Performance
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B implicit . s, =025, ¢ = 1.0 s, = 0.03, ¢ =0.05 . s, = 0.5, ¢ = 2.0 s, =01, ¢ =0.1 s, =0.01, ¢ =0.01

s, =05, ¢ =20 s, =01, ¢ =01 Bl s, =001, ¢ =001 s, =0.25, ¢ = 1.0 . s, =003, 6 =0.05
(a) MPC on-line evaluation time. Bars show the (b) Overconsumption of fuel with respect to
mean while error bars shown the minimum and implicit MPC due to e-suboptimality. Implicit
maximum values. MPC uses = 4 mm/s over 20 orbits.

Figure: Comparison of the proposed semi-explicit and explicit implementations to implicit MPC in
terms of (a) on-line control input computation time and (b) total fuel consumption over 20 orbits.
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