Approximate Multiparametric Mixed-integer Convex Programming

Danylo Malyuta*, Behçet Açıkmeşe

Autonomous Controls Laboratory, University of Washington

* danylo@uw.edu

June 21, 2019

Model Predictive Control (MPC)

Model Predictive Control (MPC)

¹From Colin Jones' *Control Systems 1* slides at EPFL.

Explicit vs. Implicit MPC

Algorithm Flowchart

Outline

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Approximate Multiparametric Mixed-integer Convex Programming

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Template Optimization Problem

$$V^*(\theta) = \min_{x,\delta} f(\theta, x, \delta) \text{ s.t.}$$
(1a)

$$g(\theta, x, \delta) = 0, \tag{1b}$$

$$h(\theta, x, \delta) \in \mathcal{K},$$
 (1c)

$$\delta \in \mathbb{I}^m. \tag{1d}$$

Multiparametric mixed-integer conic program (MICP)

- $f(\theta, x, \delta) : \mathbb{R}^p \times \mathbb{R}^n \times \mathbb{I}^m \to \mathbb{R}$ jointly convex in θ and x
- $\blacktriangleright \ \{g,h\}(\theta,x,\delta): \mathbb{R}^p \times \mathbb{R}^n \times \mathbb{I}^m \to \mathbb{R}^{\{n_g,n_h\}} \text{ affine in } \theta \text{ and } x$
- $\mathcal{K} = \mathcal{K}_1 \times \cdots \times \mathcal{K}_2 \times \cdots$ convex cone (non-negative orthant, second-order cone, semidefinite cone, etc.)
- Difficult/slow to solve!

Fixed-commutation Version

$$V_{\delta}^{*}(\theta) = \min_{x} f(\theta, x, \delta) \text{ s.t.}$$
(2a)
$$g(\theta, x, \delta) = 0,$$
(2b)
$$h(\theta, x, \delta) \in \mathcal{K}.$$
(2c)

- Multiparametric conic program (CP)
- Commutation $\delta \in \mathbb{I}^m$ is fixed (i.e. chosen)
- Two questions: how to choose δ such that...
 - 1. ... Problem 2 is feasible?
 - 2. ... $V^*_{\delta}(\theta) = V^*(\theta)$ (i.e. the optimal cost is achieved)?

In this presentation we answer these two questions

Definitions

Definition 1

The feasible parameter set $\Theta^* \subset \mathbb{R}^p$ is the set of all θ parameters for which the MICP is feasible.

Definitions

Definition 2

The fixed-commutation feasible parameter set $\Theta^*_{\delta} \subset \mathbb{R}^p$ is the set of all θ parameters for which the fixed-commutation CP is feasible. Θ^*_{δ} is convex.

Definitions

Definition 3

The feasible commutation map $f_{\delta}: \Theta^* \to \mathbb{I}^m$ maps $\theta \in \Theta^*$ to a commutation δ such that $\theta \in \Theta^*_{\delta}$ (i.e. the fixed-commutation CP is feasible for this θ).

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Objective

- Compute f_{δ} over a subset of its domain $\Theta \subseteq \Theta^*$
- \blacktriangleright Typically, choose Θ as an invariant set
- ▶ f_{δ} will seed the computation of the explicit control law

General Idea

▶ Generate a simplicial partition $\mathcal{R} = \{(\mathcal{R}_i, \delta_i)\}_{i=1}^{|\mathcal{R}|}$ such that

- $\blacktriangleright \Theta = \bigcup_{i=1}^{|\mathcal{R}|} \mathcal{R}_i$
- δ_i is feasible everywhere in \mathcal{R}_i , i.e $\mathcal{R}_i \subseteq \Theta^*_{\delta_i}$

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Algorithm 1 Brute force f_{δ} computation.

- Exploit convexity of Θ^*_{δ}
- Inner-approximation algorithm exists [3]

Algorithm 1 Brute force f_{δ} computation.

1:	$\mathcal{R} \leftarrow \emptyset, \ ar{\Theta} \leftarrow \Theta$
2:	for all $\delta \in \mathbb{I}^m$ do
3:	$\mathcal{R} \leftarrow \{(\mathcal{R}', \delta): \mathcal{R}' \in \bar{\Theta} \cap \Theta^*_{\delta}\} \cup \mathcal{R}$
4:	$ar{\Theta} \leftarrow ar{\Theta} \setminus \Theta^*_\delta$
5:	if $ar{\Theta}=\emptyset$ then
6:	STOP

Algorithm 1 Brute force f_{δ} computation.

1:	$\mathcal{R} \leftarrow \emptyset$, $ar{\Theta} \leftarrow \Theta$
2:	for all $\delta \in \mathbb{I}^m$ do
3:	$\mathcal{R} \leftarrow \{(\mathcal{R}', \delta) : \mathcal{R}' \in \bar{\Theta} \cap \Theta^*_{\delta}\} \cup \mathcal{R}$
4:	$ar{\Theta} \leftarrow ar{\Theta} \setminus \Theta^*_\delta$
5:	if $ar{\Theta} = \emptyset$ then
6:	STOP

Desirable Algorithm Properties

Disadvantages of brute force:

- No attempt to go around the combinatorial complexity
- Inner approximation of Θ^{*}_δ is very slow in high dimensions
- Polytopic set intersection and set difference are numerically poor

A better algorithm:

- Explores all $\delta \in \mathcal{I}^m$ combinations only in the worst case
- Minimizes vertex count
- Only uses numerically robust operations

Our algorithm achieves these properties by:

- \blacktriangleright Solving a MICP to find a feasible δ for a current subset
- Using simplex partition cells
- Doing everything in vertex representation

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Alg	porithm 2 Proposed computation of f_{δ} .
1:	Create empty tree with open leaf Θ as root
2:	${\sf Triangulate}~\Theta$ (delaunay)
3:	while any non-leaf node exists do
4:	$\mathcal{R} \leftarrow most$ recently added node
5:	if MICP (1) infeasible for $\theta = c^{\mathcal{R}}$ then
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta eq \emptyset$
7:	else
8:	$\hat{\delta} \leftarrow solve \ (3)$
9:	if (3) is infeasible then
10:	Split ${\mathcal R}$ in half along longest edge
11:	else
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$

• Key idea: checking if $\mathcal{R} \subseteq \Theta^*_{\delta}$ is a MICP

Lemma 4

 $\mathcal{R} \subseteq \Theta^*_{\delta} \Leftrightarrow$ the fixed-commutation CP is feasible at all vertices of \mathcal{R} .

$$\delta(\mathcal{R}) = \text{find } \delta \text{ s.t.}$$
(3a)

$$g(\theta, x_{\theta}, \delta) = 0, \quad \forall \theta \in \mathcal{V}(\mathcal{R}), \quad \text{(3b)}$$

$$h(\theta, x_{\theta}, \delta) \in \mathcal{K}, \quad \forall \theta \in \mathcal{V}(\mathcal{R}),$$
 (3c)

$$\delta \in \mathbb{I}^m. \tag{3d}$$

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	orithm 2 Proposed computation of f_{δ} .
1:	Create empty tree with open leaf Θ as root
2:	Triangulate Θ (delaunay)
3:	while any non-leaf node exists do
4:	$\mathcal{R} \leftarrow most$ recently added node
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta eq \emptyset$
7:	else
8:	$\hat{\delta} \leftarrow solve \; (3)$
9:	if (3) is infeasible then
10:	Split ${\mathcal R}$ in half along longest edge
11:	else
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Alg	Algorithm 2 Proposed computation of f_{δ} .	
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Algorithm 2 Proposed computation of f_{δ} .		
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Algorithm 2 Proposed computation of f_{δ} .		
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Algorithm 2 Proposed computation of f_{δ} .		
1:	Create empty tree with open leaf Θ as root	
2:	Triangulate Θ (delaunay)	
3:	while any non-leaf node exists do	
4:	$\mathcal{R} \leftarrow most$ recently added node	
5:	if MICP (1) infeasible for $ heta=c^{\mathcal{R}}$ then	
6:	STOP, $(\Theta^*)^{\mathrm{c}} \cap \Theta \neq \emptyset$	
7:	else	
8:	$\hat{\delta} \leftarrow solve \; (3)$	
9:	if (3) is infeasible then	
10:	Split ${\mathcal R}$ in half along longest edge	
11:	else	
12:	Replace with leaf $(\mathcal{R}, \hat{\delta})$	

Convergence Properties

Definition 4

Let $\Delta \triangleq \{\delta \in \mathbb{I}^m : \Theta^*_{\delta} \cap \Theta \neq \emptyset\}$. The largest value $\kappa \in \mathbb{R}_+$ such that $\forall \theta \in \Theta \exists \delta \in \Delta$ such that $(\kappa \mathbb{B} + \theta) \setminus (\Theta^* \cap \Theta)^c \subseteq \Theta^*_{\delta}$ is called the overlap.

Assumption 1

The overlap is positive, i.e. $\kappa > 0$.

(a) Bad situation: $\kappa = 0$.

(b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap.

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

(a) Bad situation: $\kappa = 0$. (b) Good situation: $\kappa > 0$.

Figure: Illustration of zero (bad) and positive (good) overlap. Our algorithm generally (i.e. quasi-always) does not converge if $\kappa = 0$.

Theorem 5

If the overlap is positive then our algorithm either converges or fails in a finite number of iterations.

Lemma 6

If the overlap is zero, our algorithm generally (read: almost always) does not converge.

Theorem 5

If the overlap is positive then our algorithm either converges or fails in a finite number of iterations.

Lemma 6

If the overlap is zero, our algorithm generally (read: almost always) does not converge.

Theorem 5

If the overlap is positive then our algorithm either converges or fails in a finite number of iterations.

Lemma 6

If the overlap is zero, our algorithm generally (read: almost always) does not converge.

Theorem 5

If the overlap is positive then our algorithm either converges or fails in a finite number of iterations.

Lemma 6

If the overlap is zero, our algorithm generally (read: almost always) does not converge.

Partition Complexity

Recall:

- Partition is stored as a binary tree
- $\blacktriangleright \text{ Parameter } \theta \in \mathbb{R}^p$

Theorem 7

The worst-case partition tree depth τ is $\mathcal{O}(p^2 \log(\kappa^{-1}))$.

Corollary 8

The worst-case tree leaf count η is $\mathcal{O}(2^{p^2 \log(\kappa^{-1})})$.

Theorem 9

The on-line evaluation complexity of f_{δ} is $\mathcal{O}(p^4)$, i.e. polynomial time.

Illustrative Example

Illustrative Example

Outline

Partition-based Feasible Integer Solution Pre-computation for Hybrid MPC

Approximate Multiparametric Mixed-integer Convex Programming

Definitions

Definition 10

The suboptimal commutation map $f^{\epsilon}_{\delta}: \Theta^* \to \mathbb{I}^m$ associates $\theta \in \Theta^*$ to an ϵ -suboptimal commutation δ such that

$$V_{\delta}^{*}(\theta) - V^{*}(\theta) < \max\{\epsilon_{a}, \epsilon_{r}V^{*}(\theta)\},$$
(4)

where ε_a and ε_r are the absolute and relative errors.

Approximate Multiparametric Mixed-integer Convex Programming

Checking if δ is ϵ -suboptimal

$$V_{\delta}^{*}(\theta) - V^{*}(\theta) < \max\{\epsilon_{a}, \epsilon_{r}V^{*}(\theta)\}.$$
 (5)

▶ If (8) does not hold, then the following is feasible:

$$\delta^*, \theta^* = \inf_{\theta \in \mathcal{R}} \delta' \text{ s.t.}$$

$$V_{\delta}^*(\theta) - V_{\delta'}^*(\theta) \ge \max\{\epsilon_{a}, \epsilon_{r} V_{\delta'}^*(\theta)\}.$$
(6a)
(6b)

$$\begin{split} \delta^*, \theta^* &= \inf_{\theta \in \mathcal{R}} \ \delta' \text{ s.t.} \\ \bar{V}_{\delta}(\theta) - V^*_{\delta'}(\theta) \geq \max\{\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{r}} V^*_{\delta'}(\theta)\}. \end{split} \tag{7a}$$

Affine over-approximator: $\bar{V}_{\delta}(\theta) \triangleq \sum_{i=1}^{|\mathcal{V}(\mathcal{R})|} \alpha_i V_{\delta}^*(v_i).$

Approximate Multiparametric Mixed-integer Convex Programming

24/37

Checking if δ is ϵ -suboptimal

$$V_{\delta}^{*}(\theta) - V^{*}(\theta) < \max\{\epsilon_{\mathbf{a}}, \epsilon_{\mathbf{r}}V^{*}(\theta)\}.$$
(8)

• To prevent oscillations, ensure δ^* is feasible over \mathcal{R} :

$$\begin{split} \delta^*, \theta^* &= \inf_{\theta \in \mathcal{R}} \ \delta' \text{ s.t.} \\ \bar{V}_{\delta}(\theta) - V^*_{\delta'}(\theta) \geq \max\{\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{r}} V^*_{\delta'}(\theta)\}, \\ \delta' &\in \{\delta'' \in \mathbb{I}^m \setminus \{\delta\} : \mathcal{R} \subseteq \Theta^*_{\delta''}\}. \end{split} \tag{9a}$$

Affine over-approximator:

$$\bar{V}_{\delta}(\theta) \triangleq \sum_{i=1}^{|\mathcal{V}(\mathcal{R})|} \alpha_i V_{\delta}^*(v_i).$$

► To prevent excessive partitioning, only partition when:

$$\max_{\theta \in \mathcal{R}} V_{\delta}^{*}(\theta) - \min_{\theta \in \mathcal{R}} V_{\delta}^{*}(\theta) < \max\{\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{r}} V_{\delta^{*}}^{*}(\theta^{*})\},$$
(10)

25/37

Checking if δ is ϵ -suboptimal

$$V^*_{\delta}(heta) - V^*(heta) < \max\{\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{r}} V^*(heta)\}.$$

• To prevent oscillations, ensure δ^* is feasible over \mathcal{R} :

▶ To prevent excessive partitioning, only partition when:

$$\max_{\theta \in \mathcal{R}} V_{\delta}^{*}(\theta) - \min_{\theta \in \mathcal{R}} V_{\delta}^{*}(\theta) < \max\{\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{r}} V_{\delta^{*}}^{*}(\theta^{*})\},$$
(10)

Affine over-approximator:

(8)

$$\bar{V}_{\delta}(\theta) \triangleq \sum_{i=1}^{|\mathcal{V}(\mathcal{R})|} \alpha_i V_{\delta}^*(v_i).$$

Approximate Multiparametric Mixed-integer Convex Programming

25/37

Algorithm 3 Computation of f^{ϵ}_{δ} .			
1:	Create feasible partition (Algorithm 2)		
2:	while any nodes exist do		
3:	$(\mathcal{R},\delta) \leftarrow most$ recently added node		
4:	if (7) infeasible then		
5:	Change node to leaf		
6:	else		
7:	$\delta^*, \theta^* \leftarrow solve \ (9)$		
8:	if (9) feasible and (10) holds then		
9:	Change node to (\mathcal{R}, δ^*)		
10:	else		
11:	$\delta^* \leftarrow \delta$ if (10) infeasible		
12:	Split ${\mathcal R}$ in half along longest edge		
13:	Add nodes using δ^*		

Algorithm 3 Computation of f^{ϵ}_{δ} .			
1:	Create feasible partition (Algorithm 2)		
2:	while any nodes exist do		
3:	$(\mathcal{R},\delta) \leftarrow most$ recently added node		
4:	if (7) infeasible then		
5:	Change node to leaf		
6:	else		
7:	$\delta^*, \theta^* \leftarrow solve \ (9)$		
8:	if (9) feasible and (10) holds then		
9:	Change node to (\mathcal{R}, δ^*)		
10:	else		
11:	$\delta^* \leftarrow \delta$ if (10) infeasible		
12:	Split ${\mathcal R}$ in half along longest edge		
13:	Add nodes using δ^*		

Algorithm 3 Computation of f_{δ}^{ϵ} .			
1:	Create feasible partition (Algorithm 2)		
2:	while any nodes exist do		
3:	$(\mathcal{R},\delta) \leftarrow most$ recently added node		
4:	if (7) infeasible then		
5:	Change node to leaf		
6:	else		
7:	$\delta^*, heta^* \leftarrow solve \ (9)$		
8:	if (9) feasible and (10) holds then		
9:	Change node to (\mathcal{R},δ^*)		
10:	else		
11:	$\delta^* \leftarrow \delta$ if (10) infeasible		
12:	Split ${\mathcal R}$ in half along longest edge		
13:	Add nodes using δ^*		

Algorithm 3 Computation of f_{δ}^{ϵ} .			
Create feasible partition (Algorithm 2)			
while any nodes exist do			
$(\mathcal{R},\delta) \leftarrow most$ recently added node			
if (7) infeasible then			
Change node to leaf			
else			
$\delta^*, \theta^* \leftarrow solve \ (9)$			
if (9) feasible and (10) holds then			
Change node to (\mathcal{R}, δ^*)			
else			
$\delta^* \leftarrow \delta$ if (10) infeasible			
Split ${\mathcal R}$ in half along longest edge			
Add nodes using δ^*			

Algorithm 3 Computation of f_{δ}^{ϵ} .			
Create feasible partition (Algorithm 2)			
while any nodes exist do			
$(\mathcal{R},\delta) \leftarrow most$ recently added node			
if (7) infeasible then			
Change node to leaf			
else			
$\delta^*, \theta^* \leftarrow solve \ (9)$			
if (9) feasible and (10) holds then			
Change node to (\mathcal{R}, δ^*)			
else			
$\delta^* \leftarrow \delta$ if (10) infeasible			
Split ${\mathcal R}$ in half along longest edge			
Add nodes using δ^*			

Algorithm 3 Computation of f_{δ}^{ϵ} .			
Create feasible partition (Algorithm 2)			
while any nodes exist do			
$(\mathcal{R},\delta) \leftarrow most$ recently added node			
if (7) infeasible then			
Change node to leaf			
else			
$\delta^*, \theta^* \leftarrow solve \ (9)$			
if (9) feasible and (10) holds then			
Change node to (\mathcal{R}, δ^*)			
else			
$\delta^* \leftarrow \delta$ if (10) infeasible			
Split ${\mathcal R}$ in half along longest edge			
Add nodes using δ^*			

Algorithm 3 Computation of f_{δ}^{ϵ} .			
Create feasible partition (Algorithm 2)			
while any nodes exist do			
$(\mathcal{R},\delta) \leftarrow most$ recently added node			
if (7) infeasible then			
Change node to leaf			
else			
$\delta^*, \theta^* \leftarrow solve \ (9)$			
if (9) feasible and (10) holds then			
Change node to (\mathcal{R}, δ^*)			
else			
$\delta^* \leftarrow \delta$ if (10) infeasible			
Split ${\mathcal R}$ in half along longest edge			
Add nodes using δ^*			

Optimal Cost Approximation as Piecewise-Affine Function

Parallelization opportunity

Explicit Implementation

Explicit implementation = binary tree search + (Ax + b) evaluation

Approximate Multiparametric Mixed-integer Convex Programming
Convergence Properties

Definition 11

The overlap is the largest $\gamma \geq 0$ such that for each $\theta \in \Theta$, $\exists \delta \in \Delta$ which is ϵ -suboptimal in $(\gamma \mathbb{B} + \theta) \setminus \Theta^c$.

Assumption 2

The overlap is positive, i.e. $\gamma > 0$.

Approximate Multiparametric Mixed-integer Convex Programming

Convergence Properties

Theorem 12

Our algorithm converges if and only if the overlap is positive.

Theorem 13 The worst-case partition tree depth τ is $\mathcal{O}(p^2 \log(\gamma^{-1}))$.²

Theorem 14

The evaluation complexity of f^{ϵ}_{δ} is $\mathcal{O}(p^4)$, i.e. polynomial time.

²In fact, fixed-commutation cost function gradients also need to be considered, see [2, Definition 6]. Approximate Multiparametric Mixed-integer Convex Programming

Illustrative Example

Clohessy-Wilstshire-Hill dynamics [2]:

$$\begin{array}{l} {\rm cwh_xy:} & \left\{ \begin{aligned} \ddot{x} &= 3\omega_0^2 x + 2\omega_o \dot{y} + u_x + w_x, \\ \ddot{y} &= -2\omega_o \dot{x} + u_y + w_u, \\ {\rm cwh_z:} & \ddot{z} &= -\omega_o^2 z + u_z + w_z, \end{aligned} \right. \end{array}$$

Example	s_{a}	$\epsilon_{ m r}$	au	λ	T_{wall} [hr]	$T_{ m cpu}$ [hr]	M [MB]
cwh_z	0.50	2.00	13	101	0.01	0.09	< 0.01
cwh_z	0.25	1.00	17	978	0.06	0.96	< 0.01
cwh_z	0.10	0.10	20	13500	0.31	7.72	11
cwh_z	0.03	0.05	26	235231	1.91	154.19	202
cwh_z	0.01	0.01	31	3322941	6.37	2516.98	2916
cwh_xy	0.50	2.00	32	30448	0.57	53.44	36
cwh_xy	0.25	1.00	49	884323	3.38	1297.35	1069

Approximate Multiparametric Mixed-integer Convex Programming

Partitioning Progress Plot

- Python 3.7.2
- CVXPY 1.0.21
- MOSEK 9.0.87
- MPICH 3.2
- CentOS 7
- Up to 1120 processors (20 nodes × 28 cores/node)
- Cote = 2.4 GHz Intel E5-2680, 20 GB RAM

Platform: UW Hyak supercomputer

Partition Complexity

Control History

Figure: Comparison of control input histories for a coarse and a refined ϵ -suboptimal partition. By reducing ϵ_a and ϵ_r , explicit MPC approaches the behavior of implicit MPC.

Control Performance

(a) MPC on-line evaluation time. Bars show the mean while error bars shown the minimum and maximum values.

(b) Overconsumption of fuel with respect to implicit MPC due to ϵ -suboptimality. Implicit MPC uses ≈ 4 mm/s over 20 orbits.

Figure: Comparison of the proposed semi-explicit and explicit implementations to implicit MPC in terms of (a) on-line control input computation time and (b) total fuel consumption over 20 orbits.

Bibliography

- D. Malyuta, B. Açıkmeşe, M. Cacan, and D. S. Bayard, "Partition-based feasible integer solution pre-computation for hybrid model predictive control," in *European Control Conference (accepted)*, p. arXiv:1902.10989, IFAC, jun 2019.
- D. Malyuta and B. Açıkmeşe, "Approximate multiparametric mixed-integer convex programming," *IEEE Control Systems Letters (accepted)*, p. arXiv:1902.10994, 2019.
- D. Dueri, S. V. Raković, and B. Açıkmeşe, "Consistently improving approximations for constrained controllability and reachability," in *2016 European Control Conference (ECC)*, IEEE, jun 2016.