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A glimpse at Sampled-Data systems
Nothing new, just some elements from literature

Pierre Vuillemin (ONERA / DTIS / COVNI)
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Idea behind the research team COVNI:

computer theory + automatic control = something interesting for
computer-controlled systems

How do we assess dynamical performances of an implemented control-law?

I give some insights concerning what ”performance” may refer to for control people

I introduce some concepts from sampled-data systems theory

I talk restricted to Linear Time Invariant (LTI) models

References:

I a comprehensive introduction to control engineering can be found in the first
chapters (1→ 3) of [1]

I what will be presented on sampled-data systems can be found in [2]

[1] Boyd and Barratt. Linear controller design: limits of performance. 1991

[2] Chen and Francis. Optimal sampled-data control systems. 1995
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Outline

Performances of a controlled system

Quantifying discretization error

Continuous lifting and measure of performance for SD systems

Conclusion
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What is control engineering all about? I

In a nutshell

dynamical system + actuators/sensors + control objectives
tracking, disturbance rejection, etc.

= control problem (1)

And in practice...?
Different philosophies: pole placement, loop-shaping, convex synthesis...
↪→ Here: focus on the approach relying on the specification of a performance function
to be optimized ∼ optimal feedback control

Plant P
measured output y

exogenous input w regulated/performance output z

control input u

Modelling of the control problem = derive the generalized plant P:

I models for the dynamical system + actuators/sensors → this sets u and y

I identify reference signals, possible disturbances or noise → w

I select signals of interest for the control objective → z
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What is control engineering all about? II

Standard form
The loop is closed with some controller K ,

P

K

yu

w z

I most of the control architectures can be represented as this standard form,

I K can have different structures: a gain, PI, PID, etc.

I the closed-loop is the transfer from w to z, denoted Tw→z (P,K),

I in general, one wants K to stabilize (internally) the plant P.

Optimal control
Find K that stabilizes P internally and minimizes ‖Tw→z‖

For fixed plant P, performance of the closed-loop = value of ‖Tw→z‖

Linear-Time Invariant case

I practical interpretation of Tw→z convenient in the frequency-domain (transfer
function)

I useful systems norms: H∞, H2
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What is control engineering all about? III

A tracking example: ball on the beam

Motorcontroller
v

d

−

+r

θ
θ̇

Physical modelling

I dynamical sytem: beam + ball,

I actuator: motor e.g. controlled by a voltage v → u

I sensed signals: the distance d of the ball to the center of the beam, the angular
position θ and velocity θ̇ of the shaft of the motor → y = [r − d , θ, θ̇]T

Signals for the control problem:

I tracking objective → z = r − d

I only exogenous input w = r

The performance channel Tw→z describes how fast the system will follow the
reference. It can be filtered, e.g. with a low-pass filter.
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Fifty shades of models

Continuous-time/analog
modelling

P

K

yu

w z

I idealized (LTI)

I lots of techniques for
design, analysis, etc.

Hybrid modelling,
sampled-data systems

P

Kd

y

ST

u

HT

w z

I less idealized (still...)

I more involved to
manipulate (not LTI!)

”Real world”

System

computer

y

A/D

u

D/A

w z

I need a model
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Optimize then discretize...?

Analog plant P

Discrete plant Pd

Plant discretization (zoh)

Discrete controller Kd

Discrete synthesis

Analog controller K
Controller discretization (zoh, tustin, etc.)

Analog synthesis

Hybrid synthesis

I indirect methods loose optimality

I intersample behaviour is discarded

I decreasing T requires higher computational power and accuracy
↪→with shift operator, limT→0 Ad = I and limT→0 Bd = 0
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Outline

Performances of a controlled system

Quantifying discretization error

Continuous lifting and measure of performance for SD systems
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Ideal sampler & holder

Reminder: LTI model G , i/o relationship in frequency domain

analog:Y (jω) = Ga(jω)U(jω) discrete: Y (e jω) = Gd (e jω)U(e jω)

Sampler ST

ST
v vs

I time domain: vs [k] = v(kT )

I modelled by an impulse-train
∑

k δ(t − kT ) = T -periodic function

I frequency domain: Vs (e−jωT ) = 1
T

∑
k∈Z V (jω + jkωs ) frequency aliasing

I /!\not bounded for all signals in L2 (bandlimited signals or anti-aliasing filter)

Holder HT

HT
vs v

I time domain: v(t) = vs [k], kT ≤ t < (k + 1)T

I modelled as a difference of delayed steps: hT (t) = 1
T

1(t)− 1
T

1(t − T )

I frequency domain: HT (s) = 1−e−sT

sT
and V (jω) = THT (jω)Vs (e−jωT )
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Discretization error

Let K be an analog LTI model and Kd its discretization: Meaningful notion of error?

K

KdST HT

u e

−

I the error system is time-varying (T -periodic) → no transfer function

I HT ST is not bounded for all signals in L2 → need bandlimited signal u or
anti-aliasing filter

I frequency-domain error:

E(jω) = K(jω)U(jω)− HT (jω)Kd (e−jωT )
∑

k

U(jω + jkωs ) (2)

suppose U(jω) = 0 for ω > ωN (bandlimited),

E(jω) =
(

K(jω)− HT (jω)Kd (e−jωT )
)

U(jω) (3)

→ error(ω) =
∣∣K(jω)− HT (jω)Kd (e−jωT )

∣∣
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Discretization error: example

K(s) =
1

1 + 0.7s/10 + s2/100
(4)

I T1 = 0.01→ K 1
d

I T2 = 0.1→ K 2
d

10 -1 10 0 10 1 10 2 10 3

Frequency (rad/s)

-60

-40

-20

0

G
ai

n
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B
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K
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d
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d

10 -1 10 0 10 1 10 2 10 3

Frequency (rad/s)

-60

-40

-20

0

G
ai

n
(d

B
) err(K1
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Optimal discretization?

I frequency-domain error not usual system norm

I possible to look for the best discretization scheme w.r.t. the sampling instants
and w.r.t. a predefined class of signals
↪→section 4.6 in [2]
↪→usual discrete norm can be used to measure es

↪→e.g. step invariant discretization (ZOH) is the solution for steps

K

KdST HT

e

−
ST

es
Gω

δ

[2] Chen and Francis. Optimal sampled-data control systems. 1995
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Lifting continuous signals

Frequency-domain considerations are central in some design methods...but SD have
no transfer function

Continuous lifting
Consider a signal u(t) such that

∫∞
−∞ u(t)2dt <∞ (i.e. ∈ L2(R))

1. divide u in chunks of length T (sampling time): . . ., [−T , 0), [0,T ), [T , 2T ), . . .

2. call the k-th chunk uk such that uk (t) = u(kT + t) for 0 ≤ t < T

3. introduce the discrete-time signal u = {uk}k

4. u lies in l2(Z,K) where K = L2([0,T ))

Lifting operator:
L : L2(R) → l2(Z,K)

u(t) → u
(5)

I it turns out L is an isomorphism
↪→working with u or u is ’equivalent’
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Lifting systems I

G :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

such that y = Gu (6)

Lifted system G obtained by lifting input/output

I u = Lu

I y = Ly

I thus y = Gu with G = LGL−1

L−1 G L

G

G represented by discrete-time equations

G :

{
ξk+1 = Aξk + Buk

yk = Cξk + Duk
with ξk = x(kT ) (7)

where the transformations are

A : E → E, Aξ = eTAξ

B : K → E, Bu =
∫ T

0 e(T−τ)ABu(τ)dτ
C : E → K, (Cξ)(t) = CetAξ

D : K → K, (Du)(t) = Du(t) +
∫ t

0 Ce(t−τ)ABu(τ)dτ

(8)
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I thus y = Gu with G = LGL−1

L−1 G L

G

G represented by discrete-time equations

G :

{
ξk+1 = Aξk + Buk

yk = Cξk + Duk
with ξk = x(kT ) (7)

where the transformations are

A : E → E, Aξ = eTAξ

B : K → E, Bu =
∫ T

0 e(T−τ)ABu(τ)dτ
C : E → K, (Cξ)(t) = CetAξ

D : K → K, (Du)(t) = Du(t) +
∫ t

0 Ce(t−τ)ABu(τ)dτ

(8)
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Lifting systems II

Interest?

I DT and D∗T : time delay and time advance of T

I U and U∗: unit time delay and advance on l2(Z,K)

Note that time-delays translate to shifts in the lifted domain:

LD∗T = U∗L and L−1U = DT L−1 (9)

G is T -periodic ⇔ G is time invariant

Proof (⇒)

U∗GU = U∗LGL−1U
= LD∗T GDT L−1

= LGL−1

, G

(10)

A SD system can be lifted into a time-invariant discrete-time system with
infinite-dimensional input and output spaces
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Measure of performance of closed-loop SD systems I

Reminder: ‖Tw→z (K)‖ sums up the performances of the closed-loop

P

K

yu

w z

LTI

P

Kd

y

ST

u

HT

w z

T -periodic
⇔

P̃

Kd

w z

LTI, inf i/o

In chap. 12-13 of [2]:

I similar norms (2 and ∞) can be defined for Tw→z (Kd ) through Tw→z(Kd )

I ...leading to some optimal synthesis framework

I ...and analysis

I but more difficult due to infinite dimensionality of input/output spaces

[2] Chen and Francis. Optimal sampled-data control systems. 1995
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Measure of performance of closed-loop SD systems II

Some interesting applications in [2]
Consider two discretizations K 1

d (T ) and K 2
d (T ) of some controller K

I compare their performances against sampling rate T
↪→ example 13.7.3

I determine Tmax such that some prescribed performance bound is fulfilled
↪→ example 13.8.1

I perform optimal synthesis in SD framework
↪→ example 13.8.1

Other?

I given P, K , for fixed T , find Kd that minimizes the loss of performance w.r.t.
analog design

‖Tw→z(K)− Tw→z(Kd )‖ (11)

↪→everything must be considered in the lifted domain

[2] Chen and Francis. Optimal sampled-data control systems. 1995
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Outline

Performances of a controlled system

Quantifying discretization error

Continuous lifting and measure of performance for SD systems

Conclusion
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Conclusion

Continuous-time/analog
modelling

P

K

yu

w z

Hybrid modelling,
sampled-data systems

P

Kd

y

ST

u

HT

w z

”Real world”

System

computer

y

A/D

u

D/A

w z

I Sampled-Data formalism suited for computer-controlled systems

I Lifting technique to extend LTI tools

I Lifting can also be used to handle multiple sampling rates, chap. 8 [2]

I infinite dimensionality...

I still not implemented controller (code)...

Tools: [3], [4]

[2] Chen and Francis. Optimal sampled-data control systems. 1995

[3] Fujioka, Hara, and Yamamoto. “Sampled-data control toolbox: object-oriented software for sampled-data
feedback control systems”. 2004

[4] Polyakov, Rosenwasser, and Lampe. “DIRECTSD 3.0 toolbox for MATLAB: Further progress in polynomial
design of sampled-data systems”. 2006
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