[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

Interpolatory framework for mixed continuous-sampled-data models interconnection analysis

C. Poussot-Vassal

2019, Toulouse, France (coll. w. P-L. Garoche, T. Loquen, C. Pagetti and P. Vuillemin)

$F E A VIC 5 E 5$

[Introduction](#page-1-0)

[Real-time control systems](#page-2-0) [Digital Control Systems](#page-3-0) [Today's presentation](#page-4-0)

[Continuous to sampled-time models](#page-5-0)

[Mixed continuous-sampled-time loop](#page-26-0)

[Real-time control systems](#page-2-0)

- \triangleright Most control systems are real-time systems
- \blacktriangleright Many hard real-time systems are control systems

Makes digital control a central challenge in control applications

In general cases,

- ► the **controlled system** is a continuous-time dynamical one
- \blacktriangleright the **controller** is a sampled-time dynamical one

One challenge aims at **stabilizing / analyzing** a **continuous** dynamical system with a **sampled-time** controller

- \triangleright Process: plant, system to be controlled and which some "states" can measured Assumptions: linear invariant, continuous-time, controllable, observable, etc.
- \triangleright Computer (controller): chip, microcontroller, etc. Assumptions: linear invariant, discrete-time (constant clock *h*), bits limitations
- \triangleright A/D and D/A: analog digital interfaces Assumptions: piece-wise linear, discrete-time (constant clock *h*), bits limitations

S K-E Arzen's team in Lund University,

"*[http: // www. control. lth. se/ Education/ EngineeringProgram/ FRTN01. html](http://www.control.lth.se/Education/EngineeringProgram/FRTN01.html)* ", Lund, Sweden.

[Today's presentation](#page-4-0)

Suggest an hybrid (continuous / sampled-time) analysis framework

- \blacktriangleright Using irrational and descriptor modelling...
- \blacktriangleright ... solved with interpolatory methods

Summary

- \triangleright Continuous to sampled-time dynamical modelling
- \blacktriangleright Continuous-sampled-time interconnection
- \blacktriangleright Illustration

[Introduction](#page-1-0)

[Continuous to sampled-time models](#page-5-0)

[Continuous and sampled-time dynamical models](#page-6-0) [Some standard](#page-8-0) *z* transform The exact $z \leftrightarrow s$ [correspondance](#page-13-0)

[Mixed continuous-sampled-time loop](#page-26-0)

[Continuous and sampled-time dynamical models](#page-6-0)

Let us consider H , a n_u inputs, n_u outputs linear dynamical system described by the **complex-valued function of order** *n* (*n* large or ∞) equipped with realisation S

$$
\mathcal{S}: \left\{ \begin{array}{rcl} E\dot{\mathbf{x}}(t) & = & A\mathbf{x}(t) + B\mathbf{u}(t) \in \mathbb{R}^n \\ \mathbf{y}(t) & = & C\mathbf{x}(t) + D\mathbf{u}(t) \in \mathbb{R}^{n_y} \end{array} \right. \; , \; \mathbf{y}(s) = \mathbf{H}(s)\mathbf{u}(s) \in \mathbb{C}^{n_y}
$$

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Continuous and sampled-time dynamical models](#page-6-0)

Let us consider H , a n_u inputs, n_u outputs linear dynamical system described by the **complex-valued function of order** *n* (*n* large or ∞) equipped with realisation S

$$
\mathcal{S} : \left\{ \begin{array}{rcl} E\dot{\mathbf{x}}(t) & = & A\mathbf{x}(t) + B\mathbf{u}(t) \in \mathbb{R}^n \\ \mathbf{y}(t) & = & C\mathbf{x}(t) + D\mathbf{u}(t) \in \mathbb{R}^{n_y} \end{array} \right. \; , \; \mathbf{y}(s) = \mathbf{H}(s)\mathbf{u}(s) \in \mathbb{C}^{n_y}
$$

... when sampled with constant value *h*

$$
\mathcal{S}_s: \left\{ \begin{array}{rcl} E_s\mathbf{x_s}(t_k+h) & = & A_s\mathbf{x_s}(t_k)+B_s\mathbf{u}(t_k)\in\mathbb{R}^n \\ \mathbf{y}(t_k) & = & C_s\mathbf{x_s}(t_k)+D_s\mathbf{u}(t_k)\in\mathbb{R}^{n_y} \end{array} \right., \ \mathbf{y}(z)=\mathbf{H}_s(z)\mathbf{u}(z)\in\mathbb{C}^{n_y}
$$

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Some standard](#page-8-0) *z* **transform**

Zero order hold (perfect holder)

$$
z = \frac{1 - e^{sh}}{s} \quad , \quad s = \frac{z - 1}{h}
$$

Bilinear transform (approximation)

$$
z = e^{sh} = \frac{e^{sh/2}}{e^{-sh/2}} \approx \frac{1 + sh/2}{1 - sh/2} \ \ , \ \ s = \frac{1}{h} \ln z \approx \frac{2}{h} \frac{z - 1}{z + 1}
$$

Pre-wrapped bilinear transform (approximation)

$$
z \approx \frac{1 + s \tan(\omega_1 h/2)/\omega_1}{1 - s \tan(\omega_1 h/2)/\omega_1}, \quad s \approx \frac{\omega_1}{\tan(\omega_1 h/2)} \frac{z - 1}{z + 1}
$$

$$
\mathbf{H}_s(e^{i\omega_1 h}) = \mathbf{H}(i\omega_1)
$$

All Mobius transformations... how accurate is it?

[Some standard](#page-8-0) *z* **transform**

- ► \mathbb{C} becomes \mathbb{D} and \mathbb{C} becomes $\overline{\mathbb{D}}$
- ^I *ı*R becomes *∂*D
- \blacktriangleright ... but

[Some standard](#page-8-0) *z* **transform**

- ► \mathbb{C} becomes \mathbb{D} and \mathbb{C} becomes $\overline{\mathbb{D}}$
- ^I *ı*R becomes *∂*D
- \blacktriangleright ... but

[Some standard](#page-8-0) *z* **transform**

- ► \mathbb{C} becomes \mathbb{D} and \mathbb{C} becomes $\overline{\mathbb{D}}$
- ^I *ı*R becomes *∂*D
- \blacktriangleright ... but

[Some standard](#page-8-0) *z* **transform**

- ► \mathbb{C}_- becomes \mathbb{D} and \mathbb{C}_+ becomes $\overline{\mathbb{D}}$
- ^I *ı*R becomes *∂*D
- \blacktriangleright ... but

00000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

$$
s = \iota \omega
$$
 and $z = e^{sh}$, thus $s = \frac{1}{h} \ln(z)$

Transfer function

$$
\mathbf{H}_s(z) = C_s \left(zE_s - A_s \right)^{-1} B_s + D_s
$$

$$
\mathbf{H}_s(s) = C_s \left(e^{s h} E_s - A_s \right)^{-1} B_s + D_s
$$

and spectrum is now **repeated every** *π/h*

-
-
-

00000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

$$
s = \iota \omega
$$
 and $z = e^{sh}$, thus $s = \frac{1}{h} \ln(z)$

Transfer function

$$
\mathbf{H}_s(z) = C_s \left(zE_s - A_s \right)^{-1} B_s + D_s
$$

$$
\mathbf{H}_s(s) = C_s \left(e^{sh} E_s - A_s \right)^{-1} B_s + D_s
$$

and spectrum is now **repeated every** *π/h*

- \blacktriangleright $\mathbf{H}(s) \in \mathcal{RH}_{\infty}, \, \# \big(\Lambda(A,E) \big) = n$ and $\Lambda(A,E) \in \mathbb{C}_ \mathbf{H}_c : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$
- \blacktriangleright $\mathbf{H}_{s}(z) \in \mathcal{R}h_{\infty}, \, \# \big(\Lambda(A_s, E_s) \big) = n$ and $\Lambda(A_s, E_s) \in \mathbb{D} \cup \partial \mathbb{D}$ $\mathbf{H}_s : \mathbb{C}([0, w_N]) \to \mathbb{C}^{n_y \times n_u}$
-

00000000

[Introduction](#page-1-0) **[Continuous to sampled-time models](#page-5-0)** [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0) 0000000000000

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

$$
s = \iota \omega
$$
 and $z = e^{sh}$, thus $s = \frac{1}{h} \ln(z)$

Transfer function

$$
\mathbf{H}_s(z) = C_s \left(zE_s - A_s \right)^{-1} B_s + D_s
$$

$$
\mathbf{H}_s(s) = C_s \left(e^{sh} E_s - A_s \right)^{-1} B_s + D_s
$$

and spectrum is now **repeated every** *π/h*

- \blacktriangleright $\mathbf{H}(s) \in \mathcal{RH}_{\infty}, \, \# \big(\Lambda(A,E) \big) = n$ and $\Lambda(A,E) \in \mathbb{C}_ \mathbf{H}_c : \mathbb{C} \to \mathbb{C}^{n_y \times n_u}$
- \blacktriangleright $\mathbf{H}_{s}(z) \in \mathcal{R}h_{\infty}, \, \# \big(\Lambda(A_s, E_s) \big) = n$ and $\Lambda(A_s, E_s) \in \mathbb{D} \cup \partial \mathbb{D}$ $\mathbf{H}_s : \mathbb{C}([0, w_N]) \to \mathbb{C}^{n_y \times n_u}$
- \blacktriangleright **H**_{*s*}(*s*), $\not\in$ \mathcal{H}_{∞} , $\not\in$ \mathcal{L}_{∞} and $\#\big(\Lambda(A_s,e^{sh}E_s)\big)=\infty$ $\mathbf{H}_s : \mathbb{C}([0, w_N]) \to \mathbb{C}^{n_y \times n_u}$

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

$$
s = \iota \omega
$$
 and $z = e^{sh}$, thus $s = \frac{1}{h} \ln(z)$

Transfer function

$$
\mathbf{H}_s(z) = C_s \left(zE_s - A_s \right)^{-1} B_s + D_s
$$

$$
\mathbf{H}_s(s) = C_s \left(e^{s h} E_s - A_s \right)^{-1} B_s + D_s
$$

and spectrum is now **repeated every** *π/h*

Note that

$$
\mathbf{y}(s) = \mathbf{H}_s(s)\mathbf{u}(s)
$$

leads to a delayed algebraic

$$
\mathcal{S}_d : \left\{ \begin{array}{rcl} 0 & = & A_s \mathbf{x_s}(t) - E_s \mathbf{x_s}(t+h) + B_s \mathbf{u}(t) \\ \mathbf{y}(t) & = & C_s \mathbf{x_s}(t) + D_s \mathbf{u}(t) \end{array} \right.
$$

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

Example #1

$$
\mathbf{H}_{s}(z) = \frac{1}{z - 0.5} \text{ and } \mathbf{H}_{s}(s) = \frac{1}{e^{sh} - 0.5}
$$
\nAd = .5;
\nh = .1;
\nwn = pi/h;
\nW = **logspace**(-2, **log10**(2*wn), 200);
\nHs = @(s) 1/(exp(s*h)-Ad);
\nHd = ss(Ad, 1, 1, 0, h);
\nFd = frequency(Hd,W);
\nfigure
\nsubplot(211); mor. bode(Hs, 'b-'', {Fd}, 'r—',W)
\nsubplot(212); mor. bode(Hs, 'b-'', {Fd}, 'r—',W, 'phase')

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

- \triangleright *h* = 0*.*2, $\omega_n \approx 31 \text{rad/s}$, $\omega_N \approx 15, \text{7} \text{rad/s}$ ($f_N = 1/h/2 = 2.5$ Hz)
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

$$
\mathbf{H}(s) = \frac{1}{(s^2/10 + .1s/\sqrt{10} + 1)(s^2/25 + .1s/5 + 1)}
$$

$$
\mathbf{H}_z(z) = \frac{0.0154z^3 + 0.1518z^2 + 0.1468z + 0.01396}{z^4 - 2.594z^3 + 3.454z^2 - 2.382z + 0.8494}
$$

$$
\mathbf{H}_t(z) = \frac{0.01699z^4 + 0.06798z^3 + 0.102z^2 + 0.06798z + 0.01699}{z^4 - 2.744z^3 + 3.703z^2 - 2.558z + 0.8715}
$$

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

- \triangleright *h* = 0*.*2, $\omega_n \approx 31 \text{rad/s}$, $\omega_N \approx 15, \text{7} \text{rad/s}$ ($f_N = 1/h/2 = 2.5$ Hz)
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

$$
\mathbf{H}(s) = \frac{1}{(s^2/10 + .1s/\sqrt{10} + 1)(s^2/25 + .1s/5 + 1)}
$$

$$
\mathbf{H}_z(z) = \frac{0.0154z^3 + 0.1518z^2 + 0.1468z + 0.01396}{z^4 - 2.594z^3 + 3.454z^2 - 2.382z + 0.8494}
$$

$$
\mathbf{H}_t(z) = \frac{0.01699z^4 + 0.06798z^3 + 0.102z^2 + 0.06798z + 0.01699}{z^4 - 2.744z^3 + 3.703z^2 - 2.558z + 0.8715}
$$

$$
\mathbf{H}_e(z) = \frac{1}{((\ln(z)/h)^2/10 + .1\ln(z)/h/\sqrt{10} + 1)((\ln(z)/h)^2/25 + .1\ln(z)/h/5 + 1)}
$$

Irrational form !

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

- \blacktriangleright $h = 0.2$, $\omega_n \approx 31 \text{rad/s}$, $\omega_N \approx 15$, 7rad/s $(f_N = 1/h/2 = 2.5$ Hz)
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

- $$
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

- \blacktriangleright $h = 0.2$, $\omega_n \approx 31 \text{rad/s}$, $\omega_N \approx 15$, 7rad/s $(f_N = 1/h/2 = 2.5$ Hz)
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

0000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

- \blacktriangleright $h = 0.2$, $\omega_n \approx 31 \text{rad/s}$, $\omega_N \approx 15$, 7rad/s $(f_N = 1/h/2 = 2.5$ Hz)
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

The exact *z* ↔ *s* **[correspondance](#page-13-0)**

Example #2 (trying to convince)

- $$
- ▶ Zero order hold, 'zoh' vs. Bilinear transform, 'tustin' vs. exact $z = e^{sh}$...

Outlines

[Introduction](#page-1-0)

[Mixed continuous-sampled-time loop](#page-26-0)

[The setup](#page-27-0) [Mixed interconnection](#page-27-0) [Model interpolation enters the game](#page-32-0) [Mixed continuous-sampled-time delay margin estimation](#page-44-0)

[Mixed interconnection](#page-27-0)

Continuous-time plant

Let us consider **H**, a *n^u* inputs, *n^y* outputs linear dynamical system described by the **complex-valued function of order** *n* (*n* large or ∞) equipped with realisation S

$$
\mathcal{S} : \left\{ \begin{array}{rcl} E\dot{\mathbf{x}}(t) & = & A\mathbf{x}(t) + B\mathbf{u}(t) \in \mathbb{R}^n \\ \mathbf{y}(t) & = & C\mathbf{x}(t) + D\mathbf{u}(t) \in \mathbb{R}^{n_y} \end{array} \right. \; , \; \mathbf{y}(s) = \mathbf{H}(s)\mathbf{u}(s) \in \mathbb{C}^{n_y}
$$

00000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Mixed interconnection](#page-27-0)

Continuous-time plant

Let us consider **H**, a *n^u* inputs, *n^y* outputs linear dynamical system described by the **complex-valued function of order** *n* (*n* large or ∞) equipped with realisation S

$$
\mathcal{S} : \left\{ \begin{array}{rcl} E\dot{\mathbf{x}}(t) & = & A\mathbf{x}(t) + B\mathbf{u}(t) \in \mathbb{R}^n \\ \mathbf{y}(t) & = & C\mathbf{x}(t) + D\mathbf{u}(t) \in \mathbb{R}^{n_y} \end{array} \right. \; , \; \mathbf{y}(s) = \mathbf{H}(s)\mathbf{u}(s) \in \mathbb{C}^{n_y}
$$

Continuous-time controller

and C, a n_y inputs, n_u outputs linear dynamical system described by the complex**valued function of order** *n^c* equipped with realisation C

$$
\mathcal{C}: \left\{ \begin{array}{rcl} \dot{\mathbf{x}}_c(t) & = & A_c \mathbf{x}_c(t) + B_c \mathbf{y}_c(t) \in \mathbb{R}^{n_c} \\ \mathbf{u}(t) & = & C_c \mathbf{x}_c(t) + D_c \mathbf{y}(t) \in \mathbb{R}^{n_u} \end{array} \right., \ \mathbf{u}(s) = \mathbf{C}(s) \mathbf{y}(s) \in \mathbb{C}^{n_u}
$$

00000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) **[Mixed continuous-sampled-time loop](#page-26-0)** [Conclusions](#page-50-0)

000 000000000 00000000 **CONCLUS**

[Mixed interconnection](#page-27-0)

Continuous-time plant

Let us consider **H**, a *n^u* inputs, *n^y* outputs linear dynamical system described by the **complex-valued function of order** *n* (*n* large or ∞) equipped with realisation S

$$
\mathcal{S} : \left\{ \begin{array}{rcl} E\dot{\mathbf{x}}(t) & = & A\mathbf{x}(t) + B\mathbf{u}(t) \in \mathbb{R}^n \\ \mathbf{y}(t) & = & C\mathbf{x}(t) + D\mathbf{u}(t) \in \mathbb{R}^{n_y} \end{array} \right. \; , \; \mathbf{y}(s) = \mathbf{H}(s)\mathbf{u}(s) \in \mathbb{C}^{n_y}
$$

Discrete-time controller (using your favorite discretisation method)

and \mathbf{C}_s , a n_y inputs, n_y outputs linear dynamical system described by the **complexvalued function of order** n_c equipped with realisation \mathcal{C}_s

$$
\mathcal{C}_s : \left\{ \begin{array}{rcl} \mathbf{x_s}(t_k+h) & = & A_s\mathbf{x_s}(t_k)+B_s\mathbf{y}(t_k) \in \mathbb{R}^{n_c} \\ \mathbf{u}(t_k) & = & C_s\mathbf{x_s}(t_k)+D_s\mathbf{y}(t_k) \in \mathbb{R}^{n_u} \end{array} \right., \ \mathbf{u}(z) = \mathbf{C}_s(z)\mathbf{y}(z) \in \mathbb{C}^{n_u}
$$

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Mixed interconnection](#page-27-0)

The interconnection with block holder

A block holder transfer function $\mathbf{H}_{BOZ}: u_k \to u(t)$ can be seen as a memory a step shifted by another step at time *h*:

$$
\mathbf{H}_{ZOH}(s) = \frac{1}{s} - \frac{e^{-sh}}{s} = \frac{1 - e^{-sh}}{s} = \frac{\mathbf{u}_h(s)}{\mathbf{u}(s)}
$$

It can be characterised by the **ODE** $\dot{\mathbf{u}}_h(t) = \mathbf{u}(t) - \mathbf{u}(t-h)$. As $\mathbf{u}(t) = C_s \mathbf{x}_s(t)$ we have

$$
\dot{\mathbf{x}}_h(t) = C_s \mathbf{x}_s(t) - C_s \mathbf{x}_s(t-h)
$$

[Mixed interconnection](#page-27-0)

$$
\label{eq:system} \left\{ \begin{array}{rcl} \dot{\mathbf{x}}(t) &=& A\mathbf{x}(t) + B(r(t) - \mathbf{u}_h(t)) &\text{plant dyn. w} \\ \mathbf{y}(t) &=& C\mathbf{x}(t) &\text{plant output} \\ 0 &=& A_s\mathbf{x}_s(t) - I\mathbf{x}_s(t+h) + B_s\mathbf{y}(t) &\text{ctl alg. cons} \\ \dot{\mathbf{u}}_h(t) &=& C_s\mathbf{x}_s(t) - C_s\mathbf{x}_s(t-h) &\text{ctl dyn. w. b} \\ \mathbf{u}(t) &=& C_s\mathbf{x}_s(t) &\text{ctl output} \end{array} \right.
$$

x˙ (*t*) = *A***x**(*t*) + *B*(*r*(*t*) − **u***h*(*t*)) plant dyn. w. ref. 0 = *As***x***s*(*t*) − *I***x***s*(*t* + *h*) + *Bs***y**(*t*) ctl alg. constraint w. g delay **u**˙ *^h*(*t*) = *Cs***x***s*(*t*) − *Cs***x***s*(*t* − *h*) ctl dyn. w. holder delay

$$
\begin{pmatrix}\nI & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0\n\end{pmatrix}\n\begin{pmatrix}\n\dot{\mathbf{x}}(t) \\
\dot{\mathbf{u}}_h(t) \\
\dot{\mathbf{x}}_s(t)\n\end{pmatrix} = \n\begin{pmatrix}\nA & -B & 0 \\
0 & 0 & C_s \\
B_s C & 0 & A_s\n\end{pmatrix}\n\begin{pmatrix}\n\mathbf{x}(t) \\
\mathbf{u}_h(t) \\
\mathbf{x}_s(t)\n\end{pmatrix} + \begin{pmatrix}\nB \\
0 \\
0\n\end{pmatrix}r(t) + \begin{pmatrix}\n0 \\
0 \\
-I\n\end{pmatrix}\n\mathbf{x}_s(t+h) + \begin{pmatrix}\n0 \\
-C_s \\
0\n\end{pmatrix}\n\mathbf{x}_s(t-h)
$$

A linear system with delays and algebraic constraint... what to do?

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Model interpolation enters the game](#page-32-0)

Rational interpolation framework

(Tangential) interpolation is the path to optimal H² **approximation**

SISO model: given H , seek a reduced-order system \hat{H} , such that

$$
\begin{array}{rcl}\n\hat{\mathbf{H}}(\mu_i) & = & \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\
\hat{\mathbf{H}}(\lambda_j) & = & \mathbf{H}(\lambda_j) \quad j = 1, \dots, k\n\end{array}
$$

S. Gugercin and A C. Antoulas and C A. Beattie, H_2 Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

A.J. Mavo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", 芝 Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Model interpolation enters the game](#page-32-0)

Rational interpolation framework

(Tangential) interpolation is the path to optimal H² **approximation**

SISO model: given H , seek a reduced-order system \hat{H} , such that

$$
\begin{array}{rcl}\n\hat{\mathbf{H}}(\mu_i) & = & \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\
\hat{\mathbf{H}}(\lambda_j) & = & \mathbf{H}(\lambda_j) \quad j = 1, \dots, k\n\end{array}
$$

MIMO model (tangential): in a similar way, given **H**, seek \hat{H} , such that

$$
\begin{array}{rcl}\n\mathbf{l}_i^H \hat{\mathbf{H}}(\mu_i) &=& \mathbf{l}_i^H \mathbf{H}(\mu_i) & i = 1, \dots, q \\
\hat{\mathbf{H}}(\lambda_j) \mathbf{r}_j &=& \mathbf{H}(\lambda_j) \mathbf{r}_j & j = 1, \dots, k\n\end{array}
$$

S. Gugercin and A C. Antoulas and C A. Beattie, H_2 Model Reduction for Large Scale Linear Dynamical Systems", SIAM Journal on Matrix Analysis and Applications, vol. 30(2), June 2008, pp. 609-638.

A.J. Mavo and A.C. Antoulas, "A framework for the solution of the generalized realization problem", 芝 Linear Algebra and its Applications, 425(2-3), 2007, pp 634-662.

[Model interpolation enters the game](#page-32-0)

Rational interpolation in the Loewner framework

$$
\text{Given } \mathbf{H}(s) \text{ and } \{\mu_1,\ldots,\mu_q\} \in \mathbb{C}, \ \{\lambda_1,\ldots,\lambda_k\} \in \mathbb{C}, \text{ we seek } \hat{\mathbf{H}}, \text{ s.t.}
$$

$$
\begin{array}{rcl}\n\hat{\mathbf{H}}(\mu_i) & = & \mathbf{H}(\mu_i) \quad i = 1, \dots, q \\
\hat{\mathbf{H}}(\lambda_j) & = & \mathbf{H}(\lambda_j) \quad j = 1, \dots, k\n\end{array}
$$

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Model interpolation enters the game](#page-32-0)

Rational interpolation in the Loewner framework

Given $\mathbf{H}(s)$ and $\{\mu_1, \ldots, \mu_q\} \in \mathbb{C}, \{\lambda_1, \ldots, \lambda_k\} \in \mathbb{C}$, we seek $\hat{\mathbf{H}}$, s.t.

$$
\hat{\mathbf{H}}(\mu_i) = \mathbf{H}(\mu_i) \quad i = 1, \dots, q
$$
\n
$$
\hat{\mathbf{H}}(\lambda_j) = \mathbf{H}(\lambda_j) \quad j = 1, \dots, k
$$
\n
$$
\mathbf{L} = \begin{bmatrix}\n\frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k)}{\mu_1 - \lambda_k}\n\end{bmatrix} \in \mathbb{C}^{q \times k}
$$
\n
$$
\mathbf{L} = \begin{bmatrix}\n\frac{\mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1)}{\mu_1 - \lambda_1} & \cdots & \frac{\mathbf{H}(\mu_q) - \mathbf{H}(\lambda_k)}{\mu_q - \lambda_k}\n\end{bmatrix} \in \mathbb{C}^{q \times k}
$$
\n
$$
\mathbf{L}_{\sigma} = \begin{bmatrix}\n\frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_1) \lambda_1}{\mu_1 - \lambda_1} & \cdots & \frac{\mu_1 \mathbf{H}(\mu_1) - \mathbf{H}(\lambda_k) \lambda_k}{\mu_1 - \lambda_k}\n\end{bmatrix} \in \mathbb{C}^{q \times k}
$$
\n
$$
\mathbf{W} = \begin{bmatrix}\n\mathbf{H}(\sigma_1) & \cdots & \mathbf{H}(\sigma_r)\n\end{bmatrix} \text{ and } \mathbf{V}^T = \begin{bmatrix}\n\mathbf{H}(\sigma_1) & \cdots & \mathbf{H}(\sigma_r)\n\end{bmatrix}
$$

 $\mathbf{\hat{H}}(s) = \mathbf{W} (\mathbb{L}_\sigma - s\mathbb{L})^{-1}\mathbf{V} \quad \Rightarrow \mathsf{Rational}\; \mathsf{interpolation}$

[Model interpolation enters the game](#page-32-0)

Rational interpolation in the Loewner framework

Given $\mathbf{H}(s)$ and $\{\sigma_1, \ldots, \sigma_r\} = \{\mu_1, \ldots, \mu_q\} = \{\lambda_1, \ldots, \lambda_k\} \in \mathbb{C}$, we seek $\hat{\mathbf{H}}$, s.t.

$$
\hat{\mathbf{H}}(\sigma_i) = \mathbf{H}(\sigma_i) \quad i = 1, \dots, r
$$
\n
$$
\hat{\mathbf{H}}'(\sigma_i) = \mathbf{H}'(\sigma_i)
$$

[Model interpolation enters the game](#page-32-0)

Rational interpolation in the Loewner framework

Given $\mathbf{H}(s)$ and $\{\sigma_1, \ldots, \sigma_r\} = \{\mu_1, \ldots, \mu_q\} = \{\lambda_1, \ldots, \lambda_k\} \in \mathbb{C}$, we seek $\hat{\mathbf{H}}$, s.t.

$$
\hat{\mathbf{H}}(\sigma_i) = \mathbf{H}(\sigma_i) \quad i = 1, \dots, r
$$
\n
$$
\hat{\mathbf{H}}'(\sigma_i) = \mathbf{H}'(\sigma_i)
$$

$$
\mathbf{L} = \begin{bmatrix} \mathbf{H}'(\sigma_1) & \cdots & \frac{\mathbf{H}(\sigma_1) - \mathbf{H}(\sigma_r)}{\sigma_1 - \sigma_r} \\ \vdots & \vdots \\ \frac{\mathbf{H}(\sigma_r) - \mathbf{H}(\sigma_1)}{\sigma_r - \sigma_1} & \cdots & \mathbf{H}'(\sigma_r) \end{bmatrix} \in \mathbb{C}^{r \times r}
$$

$$
\mathbf{L}_{\sigma} = \begin{bmatrix} (s\mathbf{H}(s))'_{s = \sigma_1} & \cdots & \frac{\sigma_1 \mathbf{H}(\sigma_1) - \sigma_r \mathbf{H}(\sigma_r)}{\sigma_1 - \sigma_r} \\ \vdots & \vdots \\ \frac{\sigma_r \mathbf{H}(\sigma_r) - \sigma_1 \mathbf{H}(\sigma_1)}{\sigma_r - \sigma_1} & \cdots & \frac{(s\mathbf{H}(s))'_{s = \sigma_r}}{\sigma_r} \end{bmatrix} \in \mathbb{C}^{r \times r}
$$

$$
\mathbf{W} = \begin{bmatrix} \mathbf{H}(\sigma_1) & \cdots & \mathbf{H}(\sigma_r) \end{bmatrix} \text{ and } \mathbf{V}^T = \begin{bmatrix} \mathbf{H}(\sigma_1) & \cdots & \mathbf{H}(\sigma_r) \end{bmatrix}
$$

 $\mathbf{\hat{H}}(s) = \mathbf{W}(\mathbb{L}_{\sigma} - \mathbb{L} s)^{-1}\mathbf{V} \quad \Rightarrow \text{Hermite interpolation}$

[Model interpolation enters the game](#page-32-0)

Example #3

Vibrating string (ends fixed & control and observation distributed along the string)

$$
\mathbf{H}(s) = \frac{\frac{s}{2}\sinh(s) + 2\cosh(\frac{s}{2}) - 3\cosh^2(\frac{s}{2}) + 1}{s(s + \frac{1}{2})\sinh(s) + 2\cosh(\frac{s}{2}) - 3\cosh^2(\frac{s}{2}) + 1}
$$

S R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

[Model interpolation enters the game](#page-32-0)

Example #3

H =
$$
\mathbb{Q}(s)
$$
 $(s/2 * \sinh(s) + 2 * \cosh(s/2) - 3 * \cosh(s/2)^2 + 1)$ / ...
\nFR = mor. $\text{bode}(H,W)$;
\nHr = mor. $\text{lt}(W, FR, \text{tr})$, []); % Exact rational approximation
\nHred = mor. $\text{lt}(H, r)$; % H2 approximation r=40,30,20,10

S R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

[Model interpolation enters the game](#page-32-0)

Example #3

H =
$$
\mathbb{Q}(s)
$$
 $(s/2 * \sinh(s) + 2 * \cosh(s/2) - 3 * \cosh(s/2)^2 + 1)$ / ...
\nFR = mor. $\text{bode}(H,W)$;
\nHr = mor. $\text{lt}(W, FR, \Pi)$; % Exact rational approximation
\nHred = mor. $\text{lt}(H, r)$; % H2 approximation r=40,30,20,10

S R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

[Model interpolation enters the game](#page-32-0)

Example #3

H =
$$
\mathbb{Q}(s)
$$
 $(s/2 * \sinh(s) + 2 * \cosh(s/2) - 3 * \cosh(s/2)^2 + 1)$ / ...
\nFR = mor. $\text{bode}(H,W)$;
\nHr = mor. $\text{lt}(W, FR, \text{tr})$, []); % Exact rational approximation
\nHred = mor. $\text{lt}(H, r)$; % H2 approximation r=40,30,20,10

S R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

[Model interpolation enters the game](#page-32-0)

Example #3

H =
$$
\mathbb{Q}(s)
$$
 $(s/2 * \sinh(s) + 2 * \cosh(s/2) - 3 * \cosh(s/2)^2 + 1)$ / ...
\nFR = mor. $\text{bode}(H,W)$;
\nHr = mor. $\text{lt}(W, FR, \Pi)$; % Exact rational approximation
\nHred = mor. $\text{lt}(H, r)$; % H2 approximation r=40,30,20,10

S R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

[Model interpolation enters the game](#page-32-0)

Example #3

H =
$$
\mathbb{Q}(s)
$$
 $(s/2 * \sinh(s) + 2 * \cosh(s/2) - 3 * \cosh(s/2)^2 + 1)$ / ...
\nFR = mor. $\text{bode}(H,W)$;
\nHr = mor. $\text{lt}(W, FR, \Pi)$; % Exact rational approximation
\nHred = mor. $\text{lt}(H, r)$; % H2 approximation r=40,30,20,10

S R. Curtain and K. Morris, "Transfer functions of distributed parameter systems: A tutorial", Automatica, 45(5), 2009, pp. 1101-1116.

00000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

[Mixed continuous-sampled-time delay margin estimation](#page-44-0)

Hybrid Systems Delay Margin Algorithm (HSDMA)

Require: $H(s)$ and $H_s(z)$

- 1: Set $N \in \mathbb{N}$ s.t. $N \gg \dim(A_s)$
- 2: Set frequency grid $\{\omega_i\}_{i=1}^N \in \mathbb{R}_+$ satisfying

 $0 < \omega_i < \pi/h$

3: Compute the frequency response of $\mathbf{H}_s(z)$ over $\{\omega_i\}_{i=1}^N$ as

$$
\{\Phi_i\}_{i=1}^N = \mathbf{H}_s(e^{\imath \omega_i h})
$$

$$
\mathbf{\hat{H}}_s(\imath\omega_i)=\Phi_i
$$

-
-
-

00000000

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) **[Mixed continuous-sampled-time loop](#page-26-0)** [Conclusions](#page-50-0) 0000000000000

[Mixed continuous-sampled-time delay margin estimation](#page-44-0)

Hybrid Systems Delay Margin Algorithm (HSDMA)

Require: $H(s)$ and $H_s(z)$

- 1: Set $N \in \mathbb{N}$ s.t. $N \gg \dim(A_s)$
- 2: Set frequency grid $\{\omega_i\}_{i=1}^N \in \mathbb{R}_+$ satisfying

 $0 < \omega_i < \pi/h$

3: Compute the frequency response of $\mathbf{H}_s(z)$ over $\{\omega_i\}_{i=1}^N$ as

$$
\{\Phi_i\}_{i=1}^N = \mathbf{H}_s(e^{\imath \omega_i h})
$$

4: Given $\{e^{\imath\omega_i h}, \Phi_i\}_{i=1}^N$, compute the approximate model $\hat{\mathbf{H}}_s\in \mathcal{H}_\infty$ or $\in\mathcal{L}_\infty$ satisfying, for $i = 1, \ldots, N$

$$
\mathbf{\hat{H}}_s(\imath\omega_i) = \Phi_i
$$

- 5: [opt.] If $\mathbf{H}_s(z)$ is stable (*i.e.* $\in \mathbb{D}$), enforce $\hat{\mathbf{H}}_s(s)$ to be stable too (*i.e.* $\in \mathcal{H}_{\infty}$)
- 6: Compute $\mathbf{L}(s) = \mathbf{\hat{H}}_s(s) \mathbf{H}(s)$
- 7: Compute the delay margin **DM**, based on **L**(*s*)

[Mixed continuous-sampled-time delay margin estimation](#page-44-0)

Example #4

$$
\mathbf{P}: \begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -10 & -5 \\ 4 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 0 & 0.5 \end{bmatrix} \mathbf{x}(t) \end{cases}
$$
(1)

$$
\mathbf{C}: \begin{cases} \dot{\mathbf{x}}_{s}(t) = \begin{bmatrix} -0.001 & 7,854 \\ 0 & -62.83 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 8 \end{bmatrix} \mathbf{y}(t) \\ \mathbf{u}(t) = \begin{bmatrix} 70 & 235.6 \end{bmatrix} \mathbf{x}(t) \end{cases}
$$
 (2)

[Mixed continuous-sampled-time delay margin estimation](#page-44-0)

Example #4

$$
\mathbf{P}: \begin{cases} \dot{\mathbf{x}}(t) = \begin{bmatrix} -10 & -5 \\ 4 & 0 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} \mathbf{u}(t) \\ \mathbf{y}(t) = \begin{bmatrix} 0 & 0.5 \end{bmatrix} \mathbf{x}(t) \end{cases}
$$
(3)

$$
\mathbf{C}: \left\{ \begin{array}{rcl} \mathbf{x}_{\mathbf{s}}(t_k+h) & = & A_s \mathbf{x}_{\mathbf{s}}(t_k) + B_s \mathbf{y}(t_k) \\ \mathbf{u}(t_k) & = & C_s \mathbf{x}_{\mathbf{s}}(t_k) + D_s \mathbf{y}(t_k) \end{array} \right. \tag{4}
$$

[Mixed continuous-sampled-time delay margin estimation](#page-44-0)

Example #4

Approximate the discretised controller

Note the mismatch in high frequency

[Mixed continuous-sampled-time delay margin estimation](#page-44-0)

Example #4

- [Continuous to sampled-time models](#page-5-0)
- [Mixed continuous-sampled-time loop](#page-26-0)

[Conclusions](#page-50-0)

What has been said

Mixed continuous-sampled-time dynamical models

- ► turned as a delayed DAE
- \triangleright or an infinite irrational transfer function.
- \blacktriangleright ... which has been approximated using the interpolatory framework (with some "guarantee")
- \blacktriangleright ... and embedded into (delay) margin estimation process

-
-
-
-

What has been said

Mixed continuous-sampled-time dynamical models

- ► turned as a delayed DAE
- \triangleright or an infinite irrational transfer function.
- \blacktriangleright ... which has been approximated using the interpolatory framework (with some "guarantee")
- \blacktriangleright ... and embedded into (delay) margin estimation process

What to do?

- **F** investigate the index of the DAE
- \blacktriangleright ... to treat it in the interpolation context
- \blacktriangleright extend to multi-sampling *h*
- \blacktriangleright ... link with previous talk

[Introduction](#page-1-0) [Continuous to sampled-time models](#page-5-0) [Mixed continuous-sampled-time loop](#page-26-0) [Conclusions](#page-50-0)

Interpolatory framework for mixed continuous-sampled-data models interconnection analysis

C. Poussot-Vassal

2019, Toulouse, France (coll. w. P-L. Garoche, T. Loquen, C. Pagetti and P. Vuillemin)

$F \equiv A \setminus C \setminus F \equiv S$