

Robust Control Tools for Validating UAS Flight Controllers

Slides prepared by **Micah Fry** (focusing on his contributions) Advisor: Mazen Farhood Aerospace and Ocean Engineering Virginia Tech

- Following results drawn from the papers:
	- J. M. Fry and M. Farhood, "A comprehensive analytical tool for control validation of fixed-wing unmanned aircraft," IEEE Transactions on Control Systems Technology, to appear.
	- M. Palframan, J. M. Fry, and M. Farhood, "Robustness analysis of flight controllers for fixedwing unmanned aircraft systems using integral quadratic constraints," IEEE Transactions on Control Systems Technology, Volume 27, Issue 1, Pages 86-102, January 2019.
	- J.M. Fry, M. Farhood, and P. Seiler, "IQC-based robustness analysis of discrete-time linear time-varying systems," International Journal of Robust and Nonlinear Control, Volume 27, Issue 16, Pages 3135-3157, November 2017.
- Funding:
	- $-$ NSF grant # CMMI-1351640
	- NAVAIR contract # N00421-16-2-0001

- Motivation and approach
- Background
	- Notions in robust control theory
	- Integral quadratic constraint (IQC) theory
- Unmanned aircraft system (UAS) analysis framework
- Results and observations
- IQC theory for time-varying systems
- Future work

Certifying UAS Flight Controllers

- 26% of all DoD UAS mission failures are reportedly due to flight controller issues¹
- Difficult to assess if a UAS controller will stabilize the aircraft and perform well
	- Claim can be made for *specific* cases
	- Cannot test/simulate ALL the configurations of the UAS
	- Certification methods ought to be faster and less expensive than standard techniques for manned aircraft
- Need a tool to quickly and inexpensively aid in certification of UAS flight controllers

• UAS dynamics are highly **nonlinear** and sensitive to **model uncertainties** and **external disturbances**

Goals

- Despite nonlinearities, uncertainties, and disturbances, we want to assert if a given control law will
	- 1. Stabilize the UAS
	- 2. Yield good performance
	- 3. Maintain safe behavior

Algorithmic Level Validation

 \bullet *M* is a linear dynamic system

 $x(k + 1) = Ax(k) + Bd(k), \quad e(k) = Cx(k) + Dd(k)$

- \bullet d is a disturbance signal (e.g. wind/noise)
- e is the performance output (e.g. position error)
- d belongs to the signal set $\mathcal{D} \subset \ell_2$
	- $-||d||_{\ell_2}^2 = \sum_{k=0}^{\infty} d(k)^T d(k) < \infty$ (energy of signal d)
	- D is used to better characterize the disturbances
- The "size" of M is defined by the \mathcal{D} -to- ℓ_2 -induced norm

$$
-\|M\|_{\mathcal{D}\to\ell_2} = \sup_{0 \neq d \in \mathcal{D}} \frac{\|M d\|_{\ell_2}}{\|d\|_{\ell_2}}
$$

– If $\mathcal{D} = \ell_2$, then the \mathcal{D} -to- ℓ_2 -induced norm is the standard \mathcal{H}_{∞} norm

- Uncertainties are incorporated with the Δ block
	- $\Delta =$ Δ_1 Δ_2 ⋱ ∈
- The interconnection (M, Δ) is an uncertain system
- Robust stability: $(I M_{11}\Delta)^{-1}$ is well-defined, causal, and bounded on ℓ_2

Robust Control

- Robust \mathcal{D} -to- ℓ_2 -gain performance level γ :
	- $-$ robustly stable + sup $||(M,\Delta)||_{\mathcal{D}\rightarrow\ell_2}\leq\gamma$ Δ∈
- Integral quadratic constraint (IQC) theory² provides such an upper bound γ

NO :

AEROSPACE & OCEAN ENGINEERIN AT VIRGINIA TECH

- Expansive library expressing different uncertainty groups (nonlinearities, time-varying, dynamic, etc.)
- Allows limiting disturbances to a specified signal set $\mathcal{D} \subset \ell_2$
- Unifying approach
- Provides sufficient condition expressed as a linear matrix inequality

$$
F_0 + x_1 F_1 + x_2 F_2 + \dots + x_n F_n \le 0
$$

• An uncertainty Δ satisfies the IQC defined by $\Pi(e^{j\omega}) = \Pi(e^{j\omega})^*$ $\in \mathcal{RL}_{\infty}$ if

$$
-\left[\begin{matrix} I \\ \Delta \end{matrix}\right]^* \Pi \left[\begin{matrix} I \\ \Delta \end{matrix}\right] \geq 0 \text{ (denoted by } \Delta \in \text{IQC}(\Pi))
$$

- A signal set $\mathcal{D} \subset \ell_2$ satisfies the signal IQC defined by $\Phi(e^{j\omega}) = \Phi(e^{j\omega})^*$ if $-d$, Φd _{$\ell_2 \geq 0$} for all $d \in \mathcal{D}$ (denoted by $\mathcal{D} \in \text{SigIQC}(\Phi)$)
- Given an IQC multiplier Π , a signal IQC multiplier Φ and performance level γ :

- Define the augmented IQC multiplier
$$
\tilde{\Pi} = \begin{bmatrix} \Pi_{11} & 0 & \Pi_{12} & 0 \\ 0 & I & 0 & 0 \\ \Pi_{12}^* & 0 & \Pi_{22} & 0 \\ 0 & 0 & 0 & \Phi - \gamma^2 I \end{bmatrix}
$$

- **IQC Theorem:**
	- Given an interconnection (M, Δ) , if for all $\tau \in [0,1]$:
		- $(I \tau M_{11} \Delta)^{-1}$ is well-defined and causal
		- $\tau \Delta \in \text{IQC}(\Pi)$
		- $D \in SigIQC(\Phi)$

$$
\bullet \begin{bmatrix} M \\ I \end{bmatrix}^* \widetilde{\Pi} \begin{bmatrix} M \\ I \end{bmatrix} \leq -\epsilon I \text{ (where } \epsilon > 0)
$$

– Then:

• (M, Δ) has a robust \mathcal{D} -to- ℓ_2 -gain performance level of γ

- Work has been done in deriving a framework for analysis of uncertain UAS³
	- Uncertainties inherent to the UAS are characterized and quantified
	- IQC analysis is conducted to identify sensitivities and compare controllers
	- Signal IQCs are utilized to significantly reduce conservativeness of analysis results
	- A controller tuning routine using IQC analysis is developed
	- Framework is validated by conducting flight tests

³ M. Palframan, J. M. Fry, and M. Farhood, "Robustness analysis of flight controllers for fixed-wing unmanned aircraft systems using integral quadratic constraints," IEEE Transactions on Control Systems Technology, Volume 27, Issue 1, Pages 86-102, January 2019.

UAS IQC Framework Overview

UAS IQC Framework Overview

UAS IQC Framework Overview

• Signal IQC multipliers are also used to characterize sensor noise

- Using MATLAB, the previous framework produces uncertain UAS model
- Uncertainties are scaled with $\epsilon \in [0,1]$

Results

• IQC analysis is conducted by solving a semi-definite program

Results (Sensitivities)

- Given a controller, IQC analysis is conducted on uncertain UAS
	- 80 2.4 $-Aero + Control$ **–**Aero 2.8 \triangle Aero \longleftarrow Control \mathbf{A} ero + Dynamic \blacksquare Control Degradation of \bigstar Control + Dynamic \longrightarrow Dynamic 2.3 \rightarrow Dynamic 2.6 60 $Aero + Control$ $Aero + Dynamic$ 2.2 \bigoplus Control + Dynamic 2.4 $\left.\rightthreetimes_{2.1}$ \rightarrow All 2.5 2.2 $\overline{2}$ 80° 1.9 \mathfrak{D} 0.2 0.6 0.8 0.2 0.6 0.8 0.4 0.4 0.2 0.4 0.6 0.8
- Analysis done on separate and combined groups
- Reveals sensitivities to uncertainties
- % Degradation of performance increases nonlinearly

• Comparing one controller against another

• Demonstrates improved γ -value AND reduced sensitivity to uncertainties

Results (Tuning)

• Vary controller design parameters to iteratively find controller which yields improved γ -values

- Example controller design parameters:
	- PID: K_P, K_I, K_D
	- $-$ LQR: Q and R matrices

• Implement BFGS algorithm for solving nonlinear optimization problem K_P

- Validation process for uncertain UAS framework:
	- Tune a controller using IQC analysis
	- Conduct IQC analysis on initial, intermediate, and final controller
	- Conduct Monte-Carlo simulations of uncertain UAS with controllers
	- Conduct flight tests with controllers
	- Compare γ -values obtained from IQC analysis, simulations, and flight tests
	- <https://www.youtube.com/watch?v=2HvmhOieRS0&t=17s>

• Tuning routine starts with bad controller, ends with good controller

- Confirms that IQC analysis can qualitatively compare and tune controllers
- Simulations are over-optimistic while IQC analysis is conservative

- The previous results applied for
	- a single controller type (trajectory-tracking H_{∞})
	- flying a single maneuver (level circle)
- How can we apply IQC analysis to a suite of maneuvers?
- How well does IQC analysis predict performance for different controller types⁴?

• A level path may be characterized by the history of its *radius of curvature (R)*

- The effect of R may be incorporated in the UAS dynamics as an uncertainty
- Enforcing $|R| \ge r_c$ signifies that IQC analysis applies for executing any level path with a bounded radius of curvature

- Given a path, UAS control is approached in two ways:
	- Path-following (stay on a 3D path)
	- Trajectory-tracking (be at a certain place at a certain time)

• Most off-the-shelf UAS controllers are path-following

• Building off previous work⁵, new UAS path-following dynamics are expressed

^{24/38} ⁵ I. Kaminer, A. Pascoal, E. Xargay, N. Hovakimyan, C. Cao, and V. Dobrokhodov, "Path following for small unmanned aerial vehicles using L1 adaptive augmentation of commercial autopilots," *Journal of Guidance, Control, and Dynamics*, Volume 33, Issue 2, Pages 550-564, 2010.

- Repeat previous validation procedure (analysis, simulations, flight tests)
- Five controller types
	- Trajectory-tracking H_{∞}
	- $-$ Trajectory-tracking H_2
	- Path-following H_{∞}
	- Path-following H_2
	- Path-following PID
- Executing a racetrack maneuver

• <https://www.youtube.com/watch?v=pSwoEPrc56k&t=217s>

Results (Path-following H_{∞} **)**

• Final controller is *robust* to uncertainties

Invent the Future

- IQC analysis predicts initial controller performs better than final controller *without* uncertainties
- Initial controller with uncertainties will *fail*; confirmed by simulation

- Providing information on the disturbances (wind/sensor noise) is VERY helpful
- γ -value for the uncertain system is less than the \mathcal{H}_{∞} norm of the nominal system
- This is because IQC analysis is restricted to appropriate types of disturbances!
	- Wind = constant + Dryden model turbulence
	- $-$ Sensor noise $=$ white noise signals

Interesting Observation 2

- Not only can signal IQCs reduce conservatism, they help make improved predictions
- These simulations are conducted by assuming wind consists of constant wind + turbulence

 $(\gamma_{IOC}$ obtained with pertinent signal IQCs)

If simulations allows wind to be more general (being more conservative) these comparisons flip

 (γ_{loc}) obtained w/o signal IQCs, i.e., $\mathcal{D} = \ell_2$)

• A previous PID controller provided an interesting case study

- IQC analysis concluded the initial controller **was not** robust
- Simulations predicted the initial controller **was** robust
- During flight tests, the initial controller **failed**

- The previous results demonstrate:
	- How to derive the uncertain UAS model
	- How IQC analysis generates γ -values to
		- Identify sensitivities to uncertainties
		- Compare controllers
		- Tune controllers
		- Predict loss-of-control where simulation may not
- Can IQC analysis be used to bound the UAS states?

- Mathematical meaning of γ :
	- For any disturbance $d \in \mathcal{D}$ and any uncertainty $\Delta \in \Delta$
		- **energy of the performance signal** will be less than or equal to the **energy of** the disturbance signal scaled by γ^2

•
$$
||e||_{\ell_2} \le \gamma ||d||_{\ell_2}
$$
 for all $\Delta \in \Delta$, $d \in \mathcal{D}$

- Previous results demonstrated γ is a useful metric, but it isn't too intuitive
- If $e(k) = 0$ at every time *except* a single instance \tilde{k} , we could bound the output at \tilde{k}

AOE AEROSPACE & OCEAN ENG

- Recall that the IQC theorem is concerned with asserting the inequality:
	- \overline{M} \boldsymbol{l} $\widetilde{\Pi}$ ^M \boldsymbol{l} $≤$ $-∈$ *I*

/irginia lech

• If the system M and augmented multiplier Π are LTI, this operator inequality becomes

$$
-\left[\frac{M(e^{j\omega})}{I}\right]^* \widetilde{\Pi}(e^{j\omega}) \left[\frac{M(e^{j\omega})}{I}\right] \le -\epsilon I \text{ for all } \omega \in \mathbb{R} \cup \{\infty\}
$$

• Via the KYP lemma, this frequency-domain inequality (having infinite constraints) is equivalent to the existence of a $P = P^T$ and such that

$$
-\begin{bmatrix} I & 0 \\ \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix}^T \begin{bmatrix} -P & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & \tilde{S} \end{bmatrix} \begin{bmatrix} I & 0 \\ \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{bmatrix} \preccurlyeq -\epsilon I
$$
, where $\tilde{\Pi} = \tilde{\Psi}^* \tilde{S} \tilde{\Psi} \& [\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}]$ is a realization of $\tilde{\Psi} \begin{bmatrix} M \\ I \end{bmatrix}$

What if M and/or Π are time-varying? We get stuck at the operator inequality

- We have proven that a set of similar LMIs provide similar robustness guarantees
	- M and Π can be time varying
- IQC Theorem⁶:
	- Given an interconnection (M, Δ) , if:
		- $(I M_{11}\Delta)^{-1}$ is well-defined and causal
		- $\Delta \in \text{IQC}(\Pi)$ and $\Pi_{11} \geq \beta I$, $\Pi_{22} \leq -\beta I$ (where $\beta > 0$)
		- There exist a sequence $P(k) = P(k)^T$ and scalar $\epsilon > 0$ such that:

$$
-\begin{bmatrix} I & 0 \ \tilde{A}(k) & \tilde{B}(k) \ \tilde{C}(k) & \tilde{D}(k) \end{bmatrix}^T \begin{bmatrix} -P(k) & 0 & 0 \ 0 & P(k+1) & 0 \ 0 & 0 & \tilde{S}(k) \end{bmatrix} \begin{bmatrix} I & 0 \ \tilde{A}(k) & \tilde{B}(k) \ \tilde{C}(k) & \tilde{D}(k) \end{bmatrix} \preccurlyeq -\epsilon I
$$

- Then:
	- (M, Δ) has a robust ℓ_2 -gain performance level of γ

⁶ J.M. Fry, M. Farhood, and P. Seiler, "IQC-based robustness analysis of discrete-time linear time-varying systems," International Journal of Robust and Nonlinear Control, Volume 27, Issue 16, Pages 3135-3157, November 2017.

- Definition: A sequence of matrices $Q(k)$ is (h, q) -eventually periodic if
	- $Q(h + q + k) = Q(h + k)$ for all $k \in \{0,1,2,...\}$ $(h \in \{0,1,...\}, q \in \{1,2,...\})$
- Definition: An LTV system *M* is (h, q) -eventually periodic if
	- The state-space matrices $A(k)$, $B(k)$, $C(k)$, and $D(k)$ are (h, q) -eventually periodic
- Corollary:
	- If *M* is an (h_M, q_M) -eventually periodic system Π is an (h_{Π}, q_{Π}) -eventually periodic system and defining h as $max(h_M, h_{\Pi})$ and q as the least common multiple of q_M and q_{Π}
	- Then the existence of a general sequence $P(k) = P(k)^T$ satisfying the previous LMIs is equivalent to the existence of an (h, q) -eventually periodic sequence $P_{h,q}(k)$ satisfying the previous LMIs
- This result enables application of computationally tractable semidefinite programs

• Given a system M with state-space matrix sequences $A(k)$, $B(k)$, $C(k)$, and $D(k)$, construct a finite horizon system \overline{M}_h of horizon length h as follows: $0 \le k \le h - 1$:

 $k = h - 1$:

$$
\bar{A}(k) = A(k), \qquad \qquad \bar{B}(k) = B(k), \n\bar{C}_1(k) = C_1(k), \qquad \qquad \bar{D}_{1i}(k) = D_{1i}(k), \n\bar{C}_2(k) = C_2(k), \qquad \qquad \bar{D}_{2i}(k) = D_{2i}(k),
$$

 $k \geq h$: All matrices set to zero

- \overline{M}_h is an $(h,1)$ -eventually periodic system
- **IQC analysis provides:** $||e(h-1)||_{\mathbb{R}^n} \leq \gamma ||d||_{\ell_2}$

- γ -value may now be used to define bounding ellipsoids at each time instant
- Example:
	- Analysis of position of uncertain UAS at the end of a Split-S maneuver
	- Assumption that aircraft begins at known initial condition

- Incorporate uncertain initial conditions
- Reduce conservatism

