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Certifying UAS Flight Controllers

• 26% of all DoD UAS mission failures are reportedly due to flight controller issues1

• Difficult to assess if a UAS controller will stabilize the aircraft and perform well

– Claim can be made for specific cases

– Cannot test/simulate ALL the configurations of the UAS

– Certification methods ought to be faster and less expensive than standard 

techniques for manned aircraft

• Need a tool to quickly and inexpensively aid in certification of UAS flight controllers

1Office of the Secretary of Defense. (Dec. 2002). Unmanned Aerial Vehicles Roadmap 2002-2027.

Photo Credit:   C. Whitlock (2014, June 20). “When Drones Fall From the Sky” The Washington Post
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Goals

• UAS dynamics are highly nonlinear and sensitive to model uncertainties and 

external disturbances

• Despite nonlinearities, uncertainties, and disturbances, we want to assert if a 

given control law will

1. Stabilize the UAS

2. Yield good performance

3. Maintain safe behavior 

Wind 

Disturbance
Uncertain CG

Nonlinear 

Aerodynamics
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Algorithmic Level Validation



7/38

Robust Control

• 𝑀 is a linear dynamic system 

𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑑 𝑘 , 𝑒 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑑(𝑘)

• 𝑑 is a disturbance signal (e.g. wind/noise)

• 𝑒 is the performance output (e.g. position error)

• 𝑑 belongs to the signal set 𝒟 ⊂ ℓ2

– ‖𝑑‖ℓ2
2 = σ𝑘=0

∞ 𝑑 𝑘 𝑇𝑑 𝑘 < ∞ (energy of signal 𝑑)

– 𝒟 is used to better characterize the disturbances

• The “size” of 𝑀 is defined by the 𝒟-to-ℓ2-induced norm

– 𝑀 𝒟→ℓ2 = sup
0≠𝑑∈𝒟

𝑀𝑑 ℓ2

𝑑 ℓ2

– If 𝒟 = ℓ2, then the 𝒟-to-ℓ2-induced norm is the standard ℋ∞ norm

𝑒 𝑑
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Robust Control

• Uncertainties are incorporated with the Δ block

– Δ =
Δ1

Δ2
⋱

∈ 𝚫

• The interconnection (𝑀, Δ) is an uncertain system

• Robust stability: 𝐼 − 𝑀11Δ
−1 is well-defined, causal, and bounded on ℓ2

• Robust 𝒟-to-ℓ2-gain performance level 𝛾: 

– robustly stable + sup
Δ∈𝚫

(𝑀, Δ) 𝒟→ℓ2 ≤ 𝛾

• Integral quadratic constraint (IQC) theory2 provides such an upper bound 𝛾

𝑒 𝑑

2A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,” IEEE Transactions on Automatic Control, Volume 42, Issue 6, Pages 819-830, June 1997.
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Integral Quadratic Constraints

– Expansive library expressing different uncertainty groups (nonlinearities, 

time-varying, dynamic, etc.)

– Allows limiting disturbances to a specified signal set 𝒟 ⊂ ℓ2

– Unifying approach

– Provides sufficient condition expressed as a linear matrix inequality

𝐹0 + 𝑥1𝐹1 + 𝑥2𝐹2 +⋯+ 𝑥𝑛𝐹𝑛 ≼ 0
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Integral Quadratic Constraints

• An uncertainty Δ satisfies the IQC defined by Π 𝑒j𝜔 = Π 𝑒𝑗𝜔
∗
∈ ℛℒ∞ if

–
𝐼
Δ

∗

Π
𝐼
Δ

≽ 0 (denoted by Δ ∈ IQC Π )

• A signal set 𝒟 ⊂ ℓ2 satisfies the signal IQC defined by Φ(𝑒𝑗𝜔) = Φ 𝑒𝑗𝜔
∗

if

– 𝑑,Φ𝑑 ℓ2 ≥ 0 for all 𝑑 ∈ 𝒟 (denoted by 𝒟 ∈ SigIQC Φ )

• Given an IQC multiplier Π, a signal IQC multiplier Φ and performance level 𝛾:

– Define the augmented IQC multiplier ෩Π =

Π11 0
0 𝐼

Π12 0
0 0

Π12
∗ 0
0 0

Π22 0

0 Φ − 𝛾2𝐼
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Integral Quadratic Constraints

• IQC Theorem:

– Given an interconnection 𝑀,Δ , if for all 𝜏 ∈ 0,1 :

• 𝐼 − 𝜏𝑀11Δ
−1 is well-defined and causal

• 𝜏Δ ∈ IQC Π

• 𝒟 ∈ SigIQC Φ

•
𝑀
𝐼

∗
෩Π
𝑀
𝐼

≼ −𝜖𝐼 (where 𝜖 > 0)

– Then:

• 𝑀, Δ has a robust 𝒟-to-ℓ2-gain performance level of 𝛾
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IQC analysis framework for UAS

• Work has been done in deriving a framework for analysis of uncertain UAS3

– Uncertainties inherent to the UAS are characterized and quantified

– IQC analysis is conducted to identify sensitivities and compare controllers

– Signal IQCs are utilized to significantly reduce conservativeness of analysis results

– A controller tuning routine using IQC analysis is developed

– Framework is validated by conducting flight tests

3 M. Palframan, J. M. Fry, and M. Farhood, “Robustness analysis of flight controllers for fixed-wing unmanned aircraft systems using integral quadratic constraints,” IEEE 

Transactions on Control Systems Technology, Volume 27, Issue 1, Pages 86-102, January 2019.
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UAS IQC Framework Overview
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UAS IQC Framework Overview

Δ𝑚, Δ𝐶𝐺𝑥 , Δ𝐶𝐺𝑧 ,

Δ𝐼𝑥 , Δ𝐼𝑦 , Δ𝐼𝑧

Δ𝑁

Δ𝐶𝑥 , Δ𝐶𝑦 , Δ𝐶𝑧 , Δ𝐶𝑙 , Δ𝐶𝑚 , Δ𝐶𝑛

Δ𝜎𝐸 , Δ𝜎𝐴 ,

Δ𝜎𝑅 , Δ𝜎𝑇

Δ𝐸 , Δ𝐴, Δ𝑅 , Δ𝑇
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UAS IQC Framework Overview 

Uncertainty Type Bounds

Δ𝐶𝑥 1 x 1 RB-SLTV −0.054 ≤ Δ𝐶𝑥(𝑘)

≤ 0.026

Δ𝐶𝑦 1 x 1 RB-SLTV −0.045 ≤ Δ𝐶𝑦 ≤ 0.037

Δ𝐶𝑧 1 x 1 RB-SLTV −0.113 ≤ Δ𝐶𝑧 ≤ 0.119

Δ𝐶𝑙 1 x 1 RB-SLTV −0.022 ≤ Δ𝐶𝑙 ≤ 0.026

Δ𝐶𝑚 1 x 1 RB-SLTV −0.120 ≤ Δ𝐶𝑚 ≤ 0.125

Δ𝐶𝑛 1 x 1 RB-SLTV −0.006 ≤ Δ𝐶𝑛 ≤ 0.006

Δ𝐸 1 x 1 DLTI Δ𝐸 ∞ ≤ 0.05

Δ𝐴 1 x 1 DLTI Δ𝐴 ∞ ≤ 0.05

Δ𝑅 1 x 1 DLTI Δ𝑅 ∞ ≤ 0.05

Δ𝑇 1 x 1 DLTI Δ𝑇 ∞ ≤ 0.2

Uncertainty Type Bounds

Δ𝜎𝐸 1 x 1 RB-SLTV 0 ≤ Δ𝜎𝐸 ≤ 0.1

Δ𝜎𝐴 1 x 1 RB-SLTV 0 ≤ Δ𝜎𝐴 ≤ 0.1

Δ𝜎𝑅 1 x 1 RB-SLTV 0 ≤ Δ𝜎𝑅 ≤ 0.1

Δ𝜎𝑇 1 x 1 RB-SLTV 0 ≤ Δ𝜎𝑇 ≤ 0.1

Δ𝑁 12 x 12 DLTI Δ𝑁 ∞ ≤ 0.01

Δ𝑚 6 x 6 SLTI −0.57 ≤ Δ𝑚 ≤ 0.57

Δ𝐶𝐺𝑥 4 x 4 SLTI 0 ≤ Δ𝐶𝐺𝑥 ≤ 0.03

Δ𝐶𝐺𝑧 3 x 3 SLTI −0.03 ≤ Δ𝐶𝐺𝑧 ≤ 0.03

Δ𝐼𝑥 1 x 1 SLTI −0.20 ≤ Δ𝐼𝑥 ≤ 0.20

Δ𝐼𝑦 3 x 3 SLTI −0.23 ≤ Δ𝐼𝑦 ≤ 0.23

Δ𝐼𝑧 1 x 1 SLTI −0.28 ≤ Δ𝐼𝑧 ≤ 0.28

• Signal IQC multipliers are also used to characterize sensor noise
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Results

• Using MATLAB, the previous framework produces uncertain UAS model

• Uncertainties are scaled with 𝜖 ∈ [0,1]

• IQC analysis is conducted by solving a semi-definite program

𝑒 𝑑
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Results (Sensitivities)

• Given a controller, IQC analysis is conducted on uncertain UAS

• Analysis done on separate and combined groups

• Reveals sensitivities to uncertainties

• % Degradation of performance increases nonlinearly
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Results (Comparison)

• Comparing one controller against another

• Demonstrates improved 𝛾-value AND reduced sensitivity to uncertainties
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Results (Tuning)

• Vary controller design parameters to iteratively 

find controller which yields improved 𝛾-values

• Example controller design parameters:

– PID: 𝑲𝑷, 𝑲𝑰, 𝑲𝑫

– LQR: 𝑸 and 𝑹 matrices

• Implement BFGS algorithm for solving nonlinear 

optimization problem 𝐾𝑃

𝐾𝐷
𝛾

Initial 

controller

Final 

controller
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Validating Framework

• Validation process for uncertain UAS framework:

– Tune a controller using IQC analysis

– Conduct IQC analysis on initial, intermediate, and final controller

– Conduct Monte-Carlo simulations of uncertain UAS with controllers

– Conduct flight tests with controllers

– Compare 𝛾-values obtained from IQC analysis, simulations, and flight tests

– https://www.youtube.com/watch?v=2HvmhOieRS0&t=17s

https://www.youtube.com/watch?v=2HvmhOieRS0&t=17s
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Results (Validation)

• Tuning routine starts with bad controller, ends with good controller

• Confirms that IQC analysis can qualitatively compare and tune controllers

• Simulations are over-optimistic while IQC analysis is conservative
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Needed Work

• The previous results applied for 

– a single controller type (trajectory-tracking 𝐻∞) 

– flying a single maneuver (level circle)

• How can we apply IQC analysis to a suite of maneuvers?

• How well does IQC analysis predict performance for different controller types4?

4 J. M. Fry and M. Farhood, “A comprehensive analytical tool for control validation of fixed-wing unmanned aircraft,” IEEE Transactions on Control Systems Technology, to appear.
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Sets of Admissible Paths

• A level path may be characterized by the history of its radius of curvature (R)

Straight line Circle Figure-8 Racetrack

• The effect of R may be incorporated in the UAS dynamics as an uncertainty

• Enforcing 𝑅 ≥ 𝑟𝑐 signifies that IQC analysis applies for executing any level path with 

a bounded radius of curvature
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Different UAS Controllers

• Given a path, UAS control is approached in two ways:

– Path-following (stay on a 3D path)

– Trajectory-tracking (be at a certain place at a certain time)

• Most off-the-shelf UAS controllers are path-following

• Building off previous work5, new UAS path-following dynamics are expressed 

5 I. Kaminer, A. Pascoal, E. Xargay, N. Hovakimyan, C. Cao, and V. Dobrokhodov, “Path following for small unmanned aerial vehicles using L1 adaptive augmentation of 

commercial autopilots,” Journal of Guidance, Control, and Dynamics, Volume 33, Issue 2, Pages 550-564, 2010.
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Updated framework

Path-following or 

Trajectory-tracking

𝑯𝟐, 𝑯∞ or PID
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Validation Procedure

• Repeat previous validation procedure (analysis, simulations, flight tests)

• Five controller types

– Trajectory-tracking 𝐻∞
– Trajectory-tracking 𝐻2
– Path-following 𝐻∞
– Path-following 𝐻2
– Path-following PID

• Executing a racetrack maneuver

• https://www.youtube.com/watch?v=pSwoEPrc56k&t=217s

https://www.youtube.com/watch?v=pSwoEPrc56k&t=217s
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Results (Path-following 𝑯∞)

𝛾𝑓𝑖𝑛𝑎𝑙
𝐼𝑄𝐶

= 2.82 max 𝛾𝑓𝑖𝑛𝑎𝑙
𝑆𝐼𝑀 = 0.74 max 𝛾𝑓𝑖𝑛𝑎𝑙

𝑇𝐸𝑆𝑇 = 1.64

• Final controller is robust to uncertainties

• IQC analysis predicts initial controller performs better than final controller without

uncertainties

• Initial controller with uncertainties will fail; confirmed by simulation
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Interesting Observation 1

• Providing information on the disturbances 

(wind/sensor noise) is VERY helpful

• 𝛾-value for the uncertain system is less than the 

ℋ∞ norm of the nominal system

• This is because IQC analysis is restricted to 

appropriate types of disturbances!

– Wind = constant + Dryden model turbulence

– Sensor noise = white noise signals
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Interesting  Observation 2

• Not only can signal IQCs reduce conservatism, they help 

make improved predictions

• These simulations are conducted by assuming wind 

consists of constant wind + turbulence 

(𝛾𝐼𝑄𝐶 obtained with pertinent signal IQCs)

• If simulations allows wind to be more general (being 

more conservative) these comparisons flip

(𝛾𝐼𝑄𝐶 obtained w/o signal IQCs, i.e., 𝒟 = ℓ2)
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Interesting Observation 3

• A previous PID controller provided an interesting case study

• IQC analysis concluded the initial controller was not robust

• Simulations predicted the initial controller was robust

• During flight tests, the initial controller failed
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Recap Results

• The previous results demonstrate:

– How to derive the uncertain UAS model

– How IQC analysis generates 𝛾-values to 

• Identify sensitivities to uncertainties

• Compare controllers

• Tune controllers

• Predict loss-of-control where simulation may not

• Can IQC analysis be used to bound the UAS states?
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Interlude on 𝜸-values

• Mathematical meaning of 𝛾:

– For any disturbance 𝑑 ∈ 𝒟 and any uncertainty Δ ∈ 𝚫

• energy of the performance signal will be less than or equal to the energy of 

the disturbance signal scaled by 𝛾2

• 𝑒 ℓ2 ≤ 𝛾 𝑑 ℓ2for all Δ ∈ 𝚫 , 𝑑 ∈ 𝒟

• Previous results demonstrated 𝛾 is a useful metric, but it isn’t too intuitive

• If 𝑒 𝑘 = 0 at every time except a single instance ෨𝑘, we could bound the output at ෨𝑘

𝑒 ℓ2
2 ≤ 𝛾2 𝑑 ℓ2

2

𝑒
𝑘

2

Time instant, 𝑘

𝑑
𝑘

2

Time instant, 𝑘
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IQC Theory for Time-Varying Systems

• Recall that the IQC theorem is concerned with asserting the inequality:

–
𝑀
𝐼

∗
෩Π
𝑀
𝐼

≼ −𝜖𝐼

• If the system 𝑀 and augmented multiplier Π are LTI, this operator inequality becomes

– 𝑀 𝑒𝑗𝜔

𝐼

∗

෩Π 𝑒𝑗𝜔 𝑀 𝑒𝑗𝜔

𝐼
≼ −𝜖𝐼 for all 𝜔 ∈ ℝ ∪ {∞}

• Via the KYP lemma, this frequency-domain inequality (having infinite constraints) is 

equivalent to the existence of a 𝑃 = 𝑃𝑇and such that

–
𝐼 0
ሚ𝐴 ෨𝐵
ሚ𝐶 ෩𝐷

𝑇 −𝑃 0 0
0 𝑃 0
0 0 ሚ𝑆

𝐼 0
ሚ𝐴 ෨𝐵
ሚ𝐶 ෩𝐷

≼ −𝜖𝐼, where ෩Π = ෩Ψ∗ ሚ𝑆෩Ψ & [ ሚ𝐴, ෨𝐵, ሚ𝐶, ෩𝐷] is a realization of ෩Ψ
𝑀
𝐼

• What if 𝑀 and/or Π are time-varying? We get stuck at the operator inequality
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• We have proven that a set of similar LMIs provide similar robustness guarantees

– 𝑀 and Π can be time varying

• IQC Theorem6:

– Given an interconnection 𝑀,Δ , if:

• 𝐼 − 𝑀11Δ
−1 is well-defined and causal

• Δ ∈ IQC Π and Π11 ≽ 𝛽𝐼, Π22 ≼ −𝛽𝐼 (where 𝛽 > 0)

• There exist a sequence 𝑃(𝑘) = 𝑃(𝑘)𝑇 and scalar 𝜖 > 0 such that:

–

𝐼 0
ሚ𝐴(𝑘) ෨𝐵(𝑘)
ሚ𝐶(𝑘) ෩𝐷(𝑘)

𝑇
−𝑃(𝑘) 0 0
0 𝑃(𝑘 + 1) 0

0 0 ሚ𝑆(𝑘)

𝐼 0
ሚ𝐴(𝑘) ෨𝐵(𝑘)
ሚ𝐶(𝑘) ෩𝐷(𝑘)

≼ −𝜖𝐼

– Then:

• 𝑀, Δ has a robust ℓ2-gain performance level of 𝛾

IQC Theory for Time-Varying Systems

6 J.M. Fry, M. Farhood, and P. Seiler, “IQC-based robustness analysis of discrete-time linear time-varying systems,” International Journal of Robust and Nonlinear Control, 

Volume 27, Issue 16, Pages 3135-3157, November 2017.
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• Definition: A sequence of matrices 𝑄 𝑘 is (ℎ, 𝑞)-eventually periodic if

– 𝑄 ℎ + 𝑞 + 𝑘 = 𝑄(ℎ + 𝑘) for all 𝑘 ∈ {0,1,2, … } (ℎ ∈ {0,1, … }, 𝑞 ∈ {1,2, … })

• Definition: An LTV system 𝑀 is (ℎ, 𝑞)-eventually periodic if

– The state-space matrices 𝐴 𝑘 , 𝐵 𝑘 , 𝐶 𝑘 , and 𝐷(𝑘) are (ℎ, 𝑞)-eventually periodic

• Corollary:

– If 𝑀 is an (ℎ𝑀, 𝑞𝑀)-eventually periodic system

Π is an (ℎΠ, 𝑞Π)-eventually periodic system 

and defining ℎ as max ℎ𝑀, ℎΠ and 𝑞 as the least common multiple of 𝑞𝑀 and 𝑞Π
– Then the existence of a general sequence 𝑃 𝑘 = 𝑃 𝑘 𝑇 satisfying the previous LMIs 

is equivalent to the existence of an (ℎ, 𝑞)-eventually periodic sequence 𝑃ℎ,𝑞 𝑘

satisfying the previous LMIs

• This result enables application of computationally tractable semidefinite programs

IQC Theory for Time-Varying Systems
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Implications of IQC theorem

• Given a system 𝑀 with state-space matrix sequences 𝐴 𝑘 , 𝐵 𝑘 , 𝐶 𝑘 , and 

𝐷 𝑘 , construct a finite horizon system ഥ𝑀ℎ of horizon length ℎ as follows:
0 ≤ 𝑘 < ℎ − 1:

ҧ𝐴 𝑘 = 𝐴 𝑘 , ത𝐵 𝑘 = 𝐵 𝑘 ,
ҧ𝐶1 𝑘 = 𝐶1 𝑘 , ഥ𝐷1𝑖 𝑘 = 𝐷1𝑖 𝑘 , 𝑖 = 1,2
ҧ𝐶2 𝑘 = 0, ഥ𝐷2𝑖 𝑘 = 0,

𝑘 = ℎ − 1:
ҧ𝐴 𝑘 = 𝐴 𝑘 , ത𝐵 𝑘 = 𝐵 𝑘 ,
ҧ𝐶1 𝑘 = 𝐶1 𝑘 , ഥ𝐷1𝑖 𝑘 = 𝐷1𝑖 𝑘 ,
ҧ𝐶2 𝑘 = 𝐶2(𝑘), ഥ𝐷2𝑖 𝑘 = 𝐷2𝑖(𝑘),

𝑘 ≥ ℎ: All matrices set to zero

• ഥ𝑀ℎ is an (ℎ, 1)-eventually periodic system

• IQC analysis provides: 𝑒 ℎ − 1 ℝ𝑛 ≤ 𝛾 𝑑 ℓ2
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Worst-case bounds

• 𝛾-value may now be used to define bounding ellipsoids at each time instant

• Example:

– Analysis of position of uncertain UAS at the end of a Split-S maneuver

– Assumption that aircraft begins at known initial condition



38/38

Future work

• Incorporate uncertain initial conditions

• Reduce conservatism


