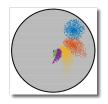
Semidefinite Approximations of Reachable Sets for Polynomial Systems

Victor Magron, CNRS-LAAS

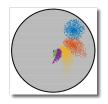
Joint work with

Pierre-Loïc Garoche (ONERA) Didier Henrion (LAAS) Xavier Thirioux (IRIT) Khalil Ghorbal (IRISA)

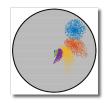
FEANICSES 19 June 2019



Initial conditions $\mathbf{X}_0 := \{ \mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \geqslant 0 \}$ $h_j \in \mathbb{R}[\mathbf{x}]$



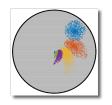
Initial conditions $\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \geqslant 0\} \quad h_j \in \mathbb{R}[\mathbf{x}]$ Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$



Initial conditions
$$\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \geqslant 0\} \quad h_j \in \mathbb{R}[\mathbf{x}]$$

Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

Reachable Set (RS) of admissible trajectories $\mathbf{X}^{\infty} := \{(\mathbf{x}_t)_{t \in \mathbb{N}} : \mathbf{x}_{t+1} = f(\mathbf{x}_t), \forall t \in \mathbb{N}, \mathbf{x}_0 \in \mathbf{X}_0\}$



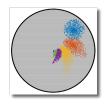
Initial conditions
$$\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \geqslant 0\} \quad h_j \in \mathbb{R}[\mathbf{x}]$$

Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

Reachable Set (RS) of admissible trajectories $\mathbf{X}^{\infty} := \{ (\mathbf{x}_t)_{t \in \mathbb{N}} : \mathbf{x}_{t+1} = f(\mathbf{x}_t), \forall t \in \mathbb{N}, \mathbf{x}_0 \in \mathbf{X}_0 \}$ $\mathbf{X}^{\infty} = \bigcup_{t \in \mathbb{N}} f^t(\mathbf{X}_0) \subseteq \mathbf{X} \subset \mathbb{R}^n \text{ (box or ball)}$

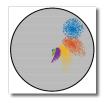
Tractable approximations of RS X^{∞} ?

The RS Problem in Continuous Time



Initial conditions $\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \ge 0\}$ Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

The RS Problem in Continuous Time

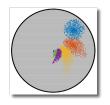


Initial conditions $\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \ge 0\}$ Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

Reachable Set (RS) of admissible trajectories

$$\mathbf{X}^{T} := \{ (\mathbf{x}(t)) : \dot{\mathbf{x}} = f(\mathbf{x}), \forall t \in [0, T], \mathbf{x}(0) = \mathbf{x}_{0} \in \mathbf{X}_{0} \}$$

The RS Problem in Continuous Time



Initial conditions $\mathbf{X}_0 := \{\mathbf{x} \in \mathbb{R}^n : h_j(\mathbf{x}) \geq 0\}$ Polynomial map $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$

Reachable Set (RS) of admissible trajectories $\mathbf{X}^T := \{ (\mathbf{x}(t)) : \dot{\mathbf{x}} = f(\mathbf{x}), \forall t \in [0, T], \mathbf{x}(0) = \mathbf{x}_0 \in \mathbf{X}_0 \}$ $\mathbf{X}^{\infty} := \lim_{t \to \infty} \mathbf{X}^T \subseteq \mathbf{X} \subset \mathbb{R}^n \text{ (box or ball)}$

Tractable approximations of RS X^{∞} ?

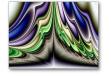
Motivations

- Occurs in several contexts :
 - program analysis: fixpoint computation

```
toyprogram (x_1, x_2) requires (0.25 \leqslant x_1 \leqslant 0.75 \&\& 0.25 \leqslant x_2 \leqslant 0.75); while (x_1^2 + x_2^2 \leqslant 1) { x_1 = x_1 + 2x_1x_2; x_2 = 0.5(x_2 - 2x_1^3); }
```

2 hybrid systems, biology: Neuron Model, Growth Model

3 control: integrator, Hénon map



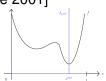
Related work: RS

- Contractive methods based on LP relaxations and polyhedra projection [Bertsekas 72]
- Extension to nonlinear systems [Harwood et al. 16]
- Bernstein/Krivine-Handelman representations [Ben Sassiet al. 15, Ben Sassiet al. 12]
- \oplus LP relaxations \implies scalability
- \ominus Convex approximations of nonconvex sets \implies coarse
- No convergence guarantees (very often)

Related work: Lasserre hierarchy

*Cast a polynomial optimization problem as an infinite-dimensional LP over measures [Lasserre 2001]

$$f^* := \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{X})} \int_{\mathbf{X}} f(\mathbf{x}) d\mu$$



Related work: Lasserre hierarchy

$$f^* := \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{X})} \int_{\mathbf{X}} f(\mathbf{x}) d\mu$$

- → Regions of attraction [Henrion-Korda 14]
- → Maximum invariants [Korda et al. 13]
- → Invariant 1D densities [Henrion 2012]

→ Maximal positively invariants [Oustry-Tacchi-Henrion 2019]

Related work: Lasserre hierarchy

- SDP approximation of polynomial images of semialgebraic sets [M.-Henrion-Lasserre 15]
- $\mathbf{X}_1 := f(\mathbf{X}_0) \subseteq \mathbf{X}$, with $\mathbf{X} \subset \mathbb{R}^n$ a box or a ball ⇒ Discrete-time system with a single iteration
- \bigvee Approximation of image measure supports \implies certified SDP over approximations of X_1
- $\mathbf{X}_t := f^t(\mathbf{X}_0)$
 - $\bigcirc \deg f^t = d \times t \implies \text{very expensive computation}$
 - \bigcirc Would only approximate X_t and not X^{∞}

Contributions

- lacktriangle General framework to approximate X^{∞}
 - \oplus No discretization is required

Contributions

- lacktriangle General framework to approximate X^{∞}
 - No discretization is required
- Infinite-dimensional LP formulation

 ∀ support of measures solving Liouville's Equation

Contributions

- General framework to approximate X[∞]
 ⊕ No discretization is required
- Infinite-dimensional LP formulation

 \[
 \vec{\partial}
 \]
 \[
 \vec{\partial}
 \]
 Support of measures solving Liouville's Equation
- Finite-dimensional SDP relaxations
- $X^{\infty} \subseteq X_r^{\infty} = \{ x \in X : w_r(x) \geqslant 1 \}$
 - Strong convergence guarantees
 - $\lim_{r\to\infty}\operatorname{vol}(\mathbf{X}_r^{\infty}\backslash\mathbf{X}^{\infty})=0$
 - \bigoplus Compute w_r by solving one **semidefinite program**

The RS Problem in Continuous Time

Motivations

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for RS

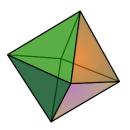
Application Examples

Conclusion and Perspectives

What is Semidefinite Programming?

■ Linear Programming (LP):

$$\begin{aligned}
\min_{\mathbf{z}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{z} \\
\text{s.t.} \quad \mathbf{A} \mathbf{z} \geqslant \mathbf{d} .
\end{aligned}$$



- Linear cost c
- Linear inequalities " $\sum_i A_{ij} z_j \geqslant d_i$ "

Polyhedron

What is Semidefinite Programming?

Semidefinite Programming (SDP):

$$\begin{aligned} & \underset{\mathbf{z}}{\min} & & \mathbf{c}^{\top}\mathbf{z} \\ & \text{s.t.} & & \sum_{i} \mathbf{F}_{i} \, z_{i} \succcurlyeq \mathbf{F}_{0} \end{aligned}.$$

- Linear cost c
- Symmetric matrices \mathbf{F}_0 , \mathbf{F}_i
- Linear matrix inequalities " $\mathbf{F} \geq 0$ " (\mathbf{F} has nonnegative eigenvalues)

Spectrahedron

What is Semidefinite Programming?

Semidefinite Programming (SDP):

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$
s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d} .$$

- Symmetric matrices \mathbf{F}_0 , \mathbf{F}_i
- Linear matrix inequalities " $\mathbf{F} \geq 0$ " (\mathbf{F} has nonnegative eigenvalues)

Spectrahedron

Prove polynomial inequalities with SDP:

$$f(a,b) := a^2 - 2ab + b^2 \geqslant 0$$
.

- Find z s.t. $f(a,b) = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix}}_{\geq 0} \begin{pmatrix} a \\ b \end{pmatrix}$.
- Find z s.t. $a^2 2ab + b^2 = z_1a^2 + 2z_2ab + z_3b^2$ (A z = d)

■ Choose a cost c e.g. (1,0,1) and solve:

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top} \mathbf{z}$$
s.t.
$$\sum_{i} \mathbf{F}_{i} z_{i} \succcurlyeq \mathbf{F}_{0} , \quad \mathbf{A} \mathbf{z} = \mathbf{d} .$$

- Solution $\begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \succcurlyeq 0$ (eigenvalues 0 and 2)
- $a^2 2ab + b^2 = \begin{pmatrix} a & b \end{pmatrix} \underbrace{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}_{a} \begin{pmatrix} a \\ b \end{pmatrix} = (a b)^2.$
- Solving SDP ⇒ Finding Sums of Squares certificates

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

■ Semialgebraic set $\mathbf{X} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_l(\mathbf{x}) \geqslant 0\}$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

■ Semialgebraic set $\mathbf{X} := \{ \mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_l(\mathbf{x}) \ge 0 \}$ $\mathbf{X} = [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_l(\mathbf{x}) \geqslant 0\}$ $\mathbf{X} = [0, 1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1 - x_1) \geqslant 0, \quad x_2(1 - x_2) \geqslant 0\}$ $x_1 = \begin{bmatrix} x_1 & x_2 & x_1 & x_2 &$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} := \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \geqslant 0, \dots, g_l(\mathbf{x}) \geqslant 0\}$ $\mathbf{X} = [0,1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \geqslant 0, \quad x_2(1-x_2) \geqslant 0\}$ $x_1 = \begin{bmatrix} x_1 & x_2 & x_1 & x_2 & x_2$

■ Sums of squares (SOS)
$$\sigma_i$$

NP hard General Problem: $f^* := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} := \{ \mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_l(\mathbf{x}) \ge 0 \}$ $\mathbf{X} = [0,1]^2 = \{ \mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0 \}$ $x_1 = \begin{bmatrix} x_1 & x_2 & x_1 & x_2 &$

$$-\frac{1}{8} + \underbrace{\frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2}_{q_1} + \underbrace{\frac{\sigma_1}{2}}_{q_2} \underbrace{x_1(1 - x_1)}_{q_2} + \underbrace{\frac{\sigma_2}{2}}_{q_2} \underbrace{x_2(1 - x_2)}_{q_2}$$

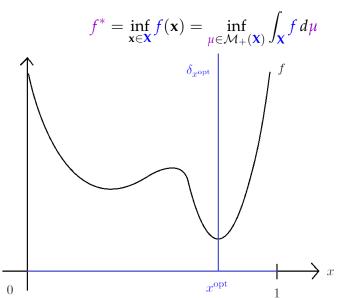
- Sums of squares (SOS) σ_i
- Bounded degree:

$$Q_r(\mathbf{X}) := \left\{ \sigma_0 + \sum_{j=1}^l \sigma_j g_j, \text{ with } \deg \sigma_j g_j \leqslant 2r \right\}$$

Hierarchy of SDP relaxations:

$$m_r := \sup_{m} \left\{ m : f - m \in \mathcal{Q}_r(\mathbf{X}) \right\}$$

- Convergence guarantees $m_r \uparrow f^*$ [Lasserre 01]
- Can be computed with SDP solvers (CSDP, SDPA)
- "No Free Lunch" Rule: $\binom{n+2r}{n}$ SDP variables



■ Let $(\mathbf{x}^{\alpha})_{\alpha \in \mathbb{N}^n}$ be the monomial basis

Definition

A sequence z has a representing measure on x if there exists a finite measure μ supported on x such that

$$\mathbf{z}_{\alpha} = \int_{\mathbf{x}} \mathbf{x}^{\alpha} \mu(d\mathbf{x}), \quad \forall \, \alpha \in \mathbb{N}^n.$$

- lacksquare $\mathcal{M}_+(X)$: space of **probability measures** supported on X
- **Q**(\mathbf{X}): combining **sums of squares** and polynomials g_j from \mathbf{X}

Polynomial Optimization Problems (POP)

$$\begin{array}{lll} \text{(Primal)} & \text{(Dual)} \\ & \text{inf} & \int_{\mathbf{X}} f \, d\mu & = & \sup \; m \\ & \text{s.t.} & \mu \in \mathcal{M}_+(\mathbf{X}) & \text{s.t.} & m \in \mathbb{R} \;, \\ & & f - m \in \mathcal{Q}(\mathbf{X}) \end{array}$$

- Finite moment sequences z of measures in $\mathcal{M}_+(\mathbf{X})$
- Truncated quadratic module $Q_r(\mathbf{X})$

Lasserre's Hierarchy for Polynomial Optimization

$$\begin{array}{lll} \text{(Moment)} & \text{(SOS)} \\ & \inf & \sum_{\alpha} f_{\alpha} \, \mathbf{z}_{\alpha} & = & \sup & m \\ & \text{s.t.} & \mathbf{M}_{r-r_{j}}(g_{j} \, \mathbf{z}) \succcurlyeq 0 \,, & 0 \leqslant j \leqslant l \,, & \text{s.t.} & m \in \mathbb{R} \,\,, \\ & z_{0} = 1 & f - m \in \mathcal{Q}_{r}(\mathbf{X}) \end{array}$$

The RS Problem in Continuous Time

Motivations

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for RS

Application Examples

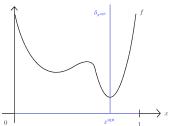
Conclusion and Perspectives

Characterizing the RS

CHARACTERIZE A VALUE

CHARACTERIZE A SET

$$f^* = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) = \inf_{\mu \in \mathcal{M}_+(\mathbf{X})} \int_{\mathbf{X}} f \, d\mu$$



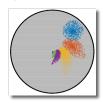
Dirac measure $\mu^{\star} = \delta_{\mathbf{x}^{\text{opt}}}$

Lebesgue measure $\mu^* = \lambda_{\mathbf{X}^{\infty}}$

Occupation Measures and Liouville's Equation

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t) \quad \mathbf{x}_0 \in \mathbf{X}_0$$

 $\mathbf{x}_1 = f(\mathbf{x}_0) \dots \mathbf{x}_t = f(\mathbf{x}_{t-1})$



- Let $\mu_0 \in \mathcal{M}_+(\mathbf{X}_0)$
- Pushforward $f_{\#}: \mathcal{M}_{+}(\mathbf{X}_{0}) \to \mathcal{M}_{+}(\mathbf{X})$

$$\mu_1(\mathbf{A}) = f_{\#} \mu_0(\mathbf{A}) := \mu_0(f^{-1}(\mathbf{A}))$$

• $f_{\#} \mu_0$ is the **image measure** of μ_0 under f

Occupation Measures and Liouville's Equation

■ Let $\mu_0 \in \mathcal{M}_+(\mathbf{X}_0)$ and

$$\mu_{1} = f_{\#} \mu_{0}$$

$$\dots$$

$$\mu_{t} = f_{\#} \mu_{t-1}$$

$$\nu_{t} = \sum_{i=0}^{t-1} \mu_{i} = \sum_{i=0}^{t-1} f_{\#}^{i} \mu_{0}$$

■ The measures μ_t , ν_t , μ_0 satisfy **Liouville's Equation**:

$$\mu_t + \nu_t = f_\# \nu_t + \mu_0$$

Occupation Measures and Liouville's Equation

- Lebesgue measure $\lambda_{\mathbf{X}_t}$ on $\mathbf{X}_t = f^t(\mathbf{X}_0)$
- $\exists \mu_{0,t} \in \mathcal{M}_+(\mathbf{X}_0)$ s.t. $\lambda_{X_t} = f_\#^t \mu_{0,t}$ $\Longrightarrow \lambda_{X_t}$ satisfies **Liouville's Equation**.

Occupation Measures and Liouville's Equation

- Lebesgue measure $\lambda_{\mathbf{X}_t}$ on $\mathbf{X}_t = f^t(\mathbf{X}_0)$
- $\exists \mu_{0,t} \in \mathcal{M}_+(\mathbf{X}_0)$ s.t. $\lambda_{X_t} = f_\#^t \mu_{0,t}$ $\Longrightarrow \lambda_{X_t}$ satisfies **Liouville's Equation**.
- Lebesgue measure $\lambda_{\mathbf{X}^T}$ on $\mathbf{X}^T := \bigcup_{t=0}^T \mathbf{X}_t$ $\implies \lambda_{\mathbf{X}^T}$ satisfies **Liouville's Equation** by superposition

Occupation Measures and Liouville's Equation

- Lebesgue measure $\lambda_{\mathbf{X}_t}$ on $\mathbf{X}_t = f^t(\mathbf{X}_0)$
- $\exists \mu_{0,t} \in \mathcal{M}_+(\mathbf{X}_0)$ s.t. $\lambda_{X_t} = f_\#^t \mu_{0,t}$ $\Longrightarrow \lambda_{X_t}$ satisfies **Liouville's Equation**.
- Lebesgue measure $\lambda_{\mathbf{X}^T}$ on $\mathbf{X}^T := \bigcup_{t=0}^T \mathbf{X}_t$ $\Longrightarrow \lambda_{\mathbf{X}^T}$ satisfies **Liouville's Equation** by superposition

$$\lambda_{\mathbf{X}^T} + \nu^T = f_{\#} \nu^T + \mu_0^T$$

average **occupation measure** v^T : measures time spent in \mathbf{X}^T

Discrete Time

Define $\mathbf{Y}^0 := \mathbf{X}^0$ and $\mathbf{Y}^t := \mathbf{X}_t \backslash \mathbf{X}^{t-1}$.

$$\lim_{T o \infty} \sum_{t=0}^T t \operatorname{vol} \mathbf{Y}^t < \infty.$$

Discrete Time

Define $\mathbf{Y}^0 := \mathbf{X}^0$ and $\mathbf{Y}^t := \mathbf{X}_t \setminus \mathbf{X}^{t-1}$.

$$\lim_{T\to\infty}\sum_{t=0}^T t\operatorname{vol}\mathbf{Y}^t<\infty.$$

Lemma

Under Volume Assumption, $\lambda_{\chi^{\infty}}$ satisfies **Liouville's Equation**

Discrete Time

Define $\mathbf{Y}^0 := \mathbf{X}^0$ and $\mathbf{Y}^t := \mathbf{X}_t \setminus \mathbf{X}^{t-1}$.

$$\lim_{T\to\infty}\sum_{t=0}^T t\operatorname{vol}\mathbf{Y}^t<\infty.$$

Lemma

Under Volume Assumption, $\lambda_{\chi^{\infty}}$ satisfies **Liouville's Equation**

Proof

- lacksquare $\lambda_{\mathbf{X}^T} = \sum_{t=0}^T \lambda_{\mathbf{Y}^t} o \lambda_{\mathbf{X}^\infty} \text{ as } T o \infty$
- $\mu_t + \nu_t = f_\# \nu_t + \mu_{0,t} \implies \nu^T := \sum_{t=0}^T \nu_t \text{ has mass }$ $\leq \sum_{t=0}^T t \operatorname{vol} \mathbf{Y}^t$

Continuous Time

Define $\tau(\mathbf{x}) = \text{minimal time to reach } \mathbf{x}$.

$$\frac{1}{\operatorname{vol}(\mathbf{X})} \int_{\mathbf{X}^{\infty}} \tau(\mathbf{x}) d\mathbf{x} < \infty.$$

Continuous Time

Define $\tau(\mathbf{x}) = \text{minimal time to reach } \mathbf{x}$.

$$\frac{1}{\operatorname{vol}(\mathbf{X})} \int_{\mathbf{X}^{\infty}} \tau(\mathbf{x}) d\mathbf{x} < \infty.$$

Lemma

Under Volume Assumption, $\lambda_{\chi^{\infty}}$ satisfies **Liouville's Equation**

Infinite Primal LP for Discrete RS

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \int_{\mathbf{X}} \mu$$
s.t.
$$\int_{\mathbf{X}} \nu \leqslant T \operatorname{vol} \mathbf{X}$$

$$\mu + \nu = f_{\#} \nu + \mu_{0}$$

$$\mu \leqslant \lambda_{\mathbf{X}}$$

$$\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}), \quad \mu, \nu \in \mathcal{M}_{+}(\mathbf{X})$$

Infinite Primal LP for Continuous RS

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \int_{\mathbf{X}} \mu$$
s.t.
$$\int_{\mathbf{X}} \nu \leqslant T \operatorname{vol} \mathbf{X}$$

$$\mu + \operatorname{div} (f \nu) = \mu_{0}$$

$$\mu \leqslant \lambda_{\mathbf{X}}$$

$$\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}), \quad \mu, \nu \in \mathcal{M}_{+}(\mathbf{X})$$

Infinite Primal LP for Continuous RS

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \int_{\mathbf{X}} \mu$$

$$\text{s.t.} \quad \int_{\mathbf{X}} \nu \leqslant T \operatorname{vol} \mathbf{X}$$

$$\mu + \operatorname{div} (f\nu) = \mu_{0}$$

$$\mu \leqslant \lambda_{\mathbf{X}}$$

$$\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}), \quad \mu, \nu \in \mathcal{M}_{+}(\mathbf{X})$$

$$\int_{\mathbf{X}} v(\mathbf{x}) \operatorname{div} f\nu = -\int_{\mathbf{X}} \operatorname{grad} v(\mathbf{x}) \cdot f(\mathbf{x}) d\nu$$

Infinite Primal LP for Discrete/Continuous RS

Lemma

Volume Assumption \implies optimal solution $\mu^* = \lambda_{\chi^{\infty}}$

Primal-dual LP in Discrete Time

Primal LP

Dual LP

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \int_{\mathbf{X}} \mu \qquad d^{T} := \inf_{u, \nu, w} \int_{\mathbf{X}} (w(\mathbf{x}) + Tu) d\mathbf{x}$$

$$\text{s.t.} \quad \int_{\mathbf{X}} \nu \leqslant T \operatorname{vol} \mathbf{X} \qquad \qquad \text{s.t.} \quad v \in \mathcal{C}_{+}(\mathbf{X}_{0})$$

$$\mu + \nu = f_{\#} \nu + \mu_{0} \qquad \qquad w \in \mathcal{C}_{+}(\mathbf{X})$$

$$\mu \leqslant \lambda_{\mathbf{X}} \qquad \qquad u + v \circ f - v \in \mathcal{C}_{+}(\mathbf{X})$$

$$\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}) \qquad \qquad u \geqslant 0$$

$$\mu, \nu \in \mathcal{M}_{+}(\mathbf{X}) \qquad \qquad u \in \mathbb{R}, v, w \in \mathcal{C}(\mathbf{X})$$

Primal-dual LP in Continuous Time

Primal LP

Dual LP

$$p^{T} := \sup_{\mu_{0}, \mu, \nu} \quad \int_{\mathbf{X}} \mu \qquad d^{T} := \inf_{u, v, w} \quad \int_{\mathbf{X}} (w(\mathbf{x}) + Tu) d\mathbf{x}$$

$$\text{s.t.} \quad \int_{\mathbf{X}} \nu \leqslant T \operatorname{vol} \mathbf{X} \qquad \qquad w \cdot v - 1 \in \mathcal{C}_{+}(\mathbf{X})$$

$$\mu + \operatorname{div}(f\nu) = \mu_{0} \qquad \qquad w \in \mathcal{C}_{+}(\mathbf{X})$$

$$\mu \leqslant \lambda_{\mathbf{X}} \qquad \qquad u + \operatorname{grad} v \cdot f \in \mathcal{C}_{+}(\mathbf{X})$$

$$\mu_{0} \in \mathcal{M}_{+}(\mathbf{X}_{0}) \qquad \qquad u \geqslant 0$$

$$\mu, \nu \in \mathcal{M}_{+}(\mathbf{X}) \qquad \qquad u \in \mathbb{R}, v, w \in \mathcal{C}(\mathbf{X})$$

Zero Duality Gap

Lemma

- $p^T = d^T$ and \exists minimizing sequence (u_k, v_k, w_k) for dual LP.
- 2 $u_k = 0 \implies \text{Volume Assumption} \implies p^T = d^T = \text{vol } \mathbf{X}^{\infty}$

SDP Strengthening of the Dual LP

Discrete Time

$$d_r^T := \inf_{u,v,w} \quad \int_{\mathbf{X}} (w(\mathbf{x}) + Tu) d\mathbf{x}$$
s.t.
$$v \in \mathcal{Q}_r(\mathbf{X}_0)$$

$$w - v - 1 \in \mathcal{Q}_r(\mathbf{X})$$

$$u + v \circ f - v \in \mathcal{Q}_{rd}(\mathbf{X})$$

$$w \in \mathcal{Q}_r(\mathbf{X})$$

$$u \ge 0$$

SDP Strengthening of the Dual LP

Continuous Time

$$d_r^T := \inf_{u,v,w} \int_{\mathbf{X}} (w(\mathbf{x}) + Tu) d\mathbf{x}$$
s.t. $v \in \mathcal{Q}_r(\mathbf{X}_0)$

$$w - v - 1 \in \mathcal{Q}_r(\mathbf{X})$$

$$u + \operatorname{grad} v \cdot f \in \mathcal{Q}_{r+d}(\mathbf{X})$$

$$w \in \mathcal{Q}_r(\mathbf{X})$$

$$u \ge 0$$

Theorem

Assume that $\mathbf{X}^0, \mathbf{X}^\infty, \mathbf{X} \setminus \mathbf{X}^\infty$ have nonempty interior.

I No duality gap between primal and dual SDP: $p_r^T = d_r^T$.

Theorem

Assume that $X^0, X^\infty, X \setminus X^\infty$ have nonempty interior.

- **1** No duality gap between primal and dual SDP: $p_r^T = d_r^T$.
- 2 Dual SDP has optimal solution (u_r, v_r, w_r) :

$$\lim_{r\to\infty}\int_{\mathbf{X}}|w_r+u_rT-\mathbf{1}_{\mathbf{X}^{\infty}}|\,d\mathbf{x}=0\,.$$

Theorem

Assume that $X^0, X^\infty, X \setminus X^\infty$ have nonempty interior.

- **1** No duality gap between primal and dual SDP: $p_r^T = d_r^T$.
- 2 Dual SDP has optimal solution (u_r, v_r, w_r) :

$$\lim_{r\to\infty}\int_{\mathbf{X}}\left|w_r+u_rT-\mathbf{1}_{\mathbf{X}^{\infty}}\right|d\mathbf{x}=0.$$

3 Let $\mathbf{X}_r^T := {\mathbf{x} \in \mathbf{X} : v_r(\mathbf{x}) + u_r T \geqslant 0} \supseteq \mathbf{X}^T$.

Theorem

Assume that $X^0, X^{\infty}, X \setminus X^{\infty}$ have nonempty interior.

- **1** No duality gap between primal and dual SDP: $p_r^T = d_r^T$.
- 2 Dual SDP has optimal solution (u_r, v_r, w_r) :

$$\lim_{r\to\infty}\int_{\mathbf{X}}|w_r+u_rT-\mathbf{1}_{\mathbf{X}^{\infty}}|\,d\mathbf{x}=0\,.$$

- 3 Let $\mathbf{X}_r^T := {\mathbf{x} \in \mathbf{X} : v_r(\mathbf{x}) + u_r T \geqslant 0} \supseteq \mathbf{X}^T$.
- $4 u_r = 0 \Rightarrow \text{Volume Assumption} \Rightarrow \lim_{r \to \infty} \text{vol}(\mathbf{X}_r^{\infty} \backslash \mathbf{X}^{\infty}) = 0.$

The RS Problem in Discrete Time

The RS Problem in Continuous Time

Motivations

Infinite LP Formulation for Polynomial Optimization

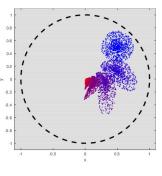
Infinite LP Formulation for RS

Application Examples

Conclusion and Perspectives

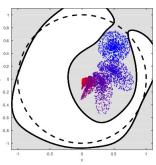
$$x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2),$$

 $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3),$



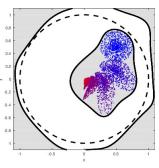
$$x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2),$$

 $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3),$



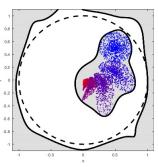
$$x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2),$$

 $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3),$



Trajectories from $\mathbf{X}_0:=\{\mathbf{x}\in\mathbb{R}^2:(x_1-\frac{1}{2})^2+(x_2-\frac{1}{2})^2\leqslant\frac{1}{4}\}$ under

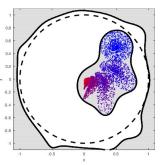
$$x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2)$$
,
 $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3)$,



 X_5^{∞}

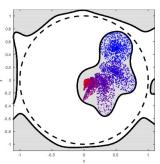
$$x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2),$$

 $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3),$



$$x_1^+ := \frac{1}{2}(x_1 + 2x_1x_2),$$

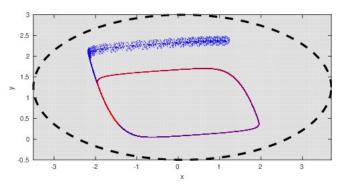
 $x_2^+ := \frac{1}{2}(x_2 - 2x_1^3),$



Trajectories from $X_0 := [1, 1.25] \times [2.25, 2.5]$ under

$$x_1^+ := x_1 + 0.2(x_1 - x_1^3/3 - x_2 + 0.875),$$

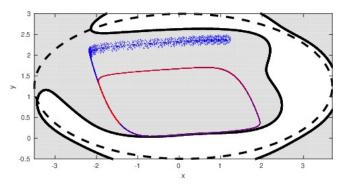
 $x_2^+ := x_2 + 0.2(0.08(x_1 + 0.7 - 0.8x_2)),$



 X_2^{∞}

Trajectories from $X_0 := [1, 1.25] \times [2.25, 2.5]$ under

$$x_1^+ := x_1 + 0.2(x_1 - x_1^3/3 - x_2 + 0.875)$$
, $x_2^+ := x_2 + 0.2(0.08(x_1 + 0.7 - 0.8x_2))$,

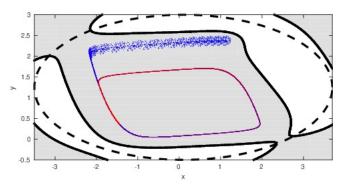


 X_3^{∞}

Trajectories from $X_0 := [1, 1.25] \times [2.25, 2.5]$ under

$$x_1^+ := x_1 + 0.2(x_1 - x_1^3/3 - x_2 + 0.875),$$

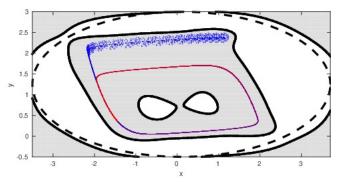
 $x_2^+ := x_2 + 0.2(0.08(x_1 + 0.7 - 0.8x_2)),$



Trajectories from $X_0 := [1, 1.25] \times [2.25, 2.5]$ under

$$x_1^+ := x_1 + 0.2(x_1 - x_1^3/3 - x_2 + 0.875),$$

 $x_2^+ := x_2 + 0.2(0.08(x_1 + 0.7 - 0.8x_2)),$

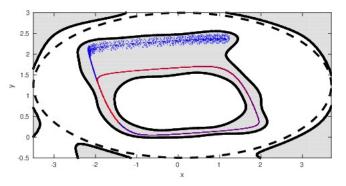


 X_5^{∞}

Trajectories from $X_0 := [1, 1.25] \times [2.25, 2.5]$ under

$$x_1^+ := x_1 + 0.2(x_1 - x_1^3/3 - x_2 + 0.875),$$

 $x_2^+ := x_2 + 0.2(0.08(x_1 + 0.7 - 0.8x_2)),$

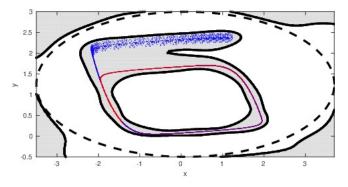


 X_6^{∞}

Trajectories from $X_0 := [1, 1.25] \times [2.25, 2.5]$ under

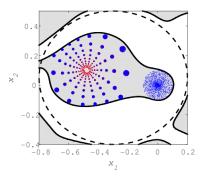
$$x_1^+ := x_1 + 0.2(x_1 - x_1^3/3 - x_2 + 0.875),$$

 $x_2^+ := x_2 + 0.2(0.08(x_1 + 0.7 - 0.8x_2)),$



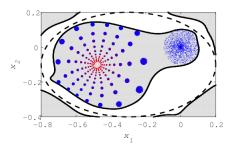
 X_7^{∞}

$$x_1^+ := x_1^2 - x_2^2 + c_1$$
,
 $x_2^+ := 2x_1x_2 + c_2$,



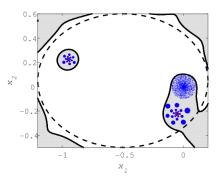
$$X_5^{\infty}$$
 with $c_1 = -0.7$ and $c_2 = 0.2$

$$x_1^+ := x_1^2 - x_2^2 + c_1$$
,
 $x_2^+ := 2x_1x_2 + c_2$,



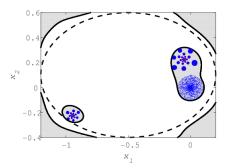
$$\mathbf{X}_5^{\infty}$$
 with $c_1=-0.7$ and $c_2=-0.2$

$$x_1^+ := x_1^2 - x_2^2 + c_1$$
,
 $x_2^+ := 2x_1x_2 + c_2$,



$$X_5^{\infty}$$
 with $c_1 = -0.9$ and $c_2 = 0.2$

$$x_1^+ := x_1^2 - x_2^2 + c_1$$
,
 $x_2^+ := 2x_1x_2 + c_2$,



$$X_5^{\infty}$$
 with $c_1 = -0.9$ and $c_2 = -0.2$

The RS Problem in Discrete Time

The RS Problem in Continuous Time

Motivations

Infinite LP Formulation for Polynomial Optimization

Infinite LP Formulation for RS

Application Examples

Conclusion and Perspectives

Conclusion and Perspectives

- \oplus Certified Approximation of the **whole reachable set** X^{∞}
- \bigcirc Computational complexity: $\binom{n+2rd}{n}$ SDP variables
- ⊕ Structure sparsity may be exploited
- Figure 2 Exploiting Sparsity for Volume Computation [Tacchi et al. 19]

Conclusion and Perspectives

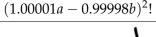
Further research

- Volume Assumption: $\lim_{T\to\infty} \sum_{t=0}^T t \operatorname{vol} \mathbf{Y}^t \leq \infty$ always true?
- **Exact** certification: $\mathbf{X}_r^T = \{\mathbf{x} \in \mathbf{X} : v_r(\mathbf{x}) + u_r T \geqslant 0\} \supseteq \mathbf{X}^T$

Perspectives: Exact Certificates

APPROXIMATE SOLUTIONS

sum of squares of $a^2 - 2ab + b^2$?



$$a^2 - 2ab + b^2 \simeq (1.00001a - 0.99998b)^2$$

 $a^2 - 2ab + b^2 \neq 1.0000200001a^2 - 1.9999799996ab + 0.9999600004b^2$



Conclusion and Perspectives

Win Two-Player Game

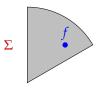
- → Univariate optimization [M.-Safey El Din-Schweighofer 18]
- → Multivariate optimization [M.-Safey El Din 18]

sum of squares of f?

Conclusion and Perspectives

Win Two-Player Game

- → Univariate optimization [M.-Safey El Din-Schweighofer 18]
- → Multivariate optimization [M.-Safey El Din 18]



* Hybrid Symbolic/Numeric Algorithms

sum of squares of $f - \varepsilon$?

Error Compensation

Bibliography

V. Magron, D. Henrion, and J.-B. Lasserre. Semidefinite Approximations of Projections and Polynomial Images of SemiAlgebraic Sets. *SIAM Journal on Optimization*, 25(4):2143–2164, 2015.

M. A. Ben Sassi, S. Sankaranarayanan, X. Chen, and E. Ábrahám. Linear relaxations of polynomial positivity for polynomial Lyapunov function synthesis. *IMA Journal of Mathematical Control and Information*, 2015.

M. A. Ben Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis of polynomial systems using linear programming relaxations. *ATVA 2012*, pages 137–151.

D. Bertsekas. Infinite time reachability of state-space regions by using feedback control. *IEEE Transactions on Automatic Control*, 17(5):604–613, Oct 1972.

S. M. Harwood and P. I. Barton. Efficient polyhedral enclosures for the reachable set of nonlinear control systems. *Mathematics of Control, Signals, and Systems*, 28(1):1–33, 2016.

D. Henrion and M. Korda. Convex Computation of the Region of Attraction of Polynomial Control Systems. Automatic Control, IEEE Transactions on, 59(2):297–312, 2014.

D. Henrion, J. Lasserre, and C. Savorgnan. Approximate Volume and Integration for Basic Semialgebraic Sets. SIAM Review, 51(4):722–743, 2009.

M. Korda, D. Henrion, and C. N. Jones. Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems. In *Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,* pages 7107–7112, Dec 2013.

End

Thank you for your attention!

 M., Garoche, Henrion and Thirioux. Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems. SIAM Journal on Control and Optimization arxiv:1703.05085

https://homepages.laas.fr/vmagron/