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The RS Problem in Discrete Time

Initial conditions X := {x € R" : hj(x) > 0} h; € R[X]
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The RS Problem in Discrete Time

Initial conditions X := {x € R" : hj(x) > 0} h; € R[X]
Polynomial map f(x) = (fi(x),..., fu(x))

Reachable Set (RS) of admissible trajectories
X% = {(Xt)teﬂ\] (X1 = f(Xt) ,Vt (S N,XO S Xo}
X® = Usen f1(Xo) € X C R" (box or ball)

Tractable approximations of RS X* ?
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The RS Problem in Continuous Time

Initial conditions X := {x € R" : hj(x) > 0}
Polynomial map f(x) = (fi(x),..., fa(x))
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The RS Problem in Continuous Time

Initial conditions X := {x € R" : hj(x) > 0}
Polynomial map f(x) = (fi(x),..., fa(x))

Reachable Set (RS) of admissible trajectories
XT = {(x(t)) : x = f(x),Vt € [0,T],x(0) = x9 € Xo}
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The RS Problem in Continuous Time

Initial conditions X := {x € R" : hj(x) > 0}
Polynomial map f(x) = (fi(x),..., fa(x))

Reachable Set (RS) of admissible trajectories
XT = {(x(t)) : x = f(x),Vt € [0,T],x(0) = x9 € Xo}
X := lim;_ XT € X C R" (box or ball)

Tractable approximations of RS X* ?
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Motivations

m Occurs in several contexts :
program analysis: fixpoint computation

toyprogram (Xx1,Xp)
requires (025 < x1 <0.75 && 0.25 < xp <0.75)

>

while (xf+x3<1){
X1 = x1+2x1x3;
Xy = 0.5(3(2 — ZX?) 5
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Related work: RS

Contractive methods based on LP relaxations and
polyhedra projection [Bertsekas 72]

Extension to nonlinear systems [Harwood et al. 16]

Bernstein/Krivine-Handelman representations [Ben Sassi-
et al. 15, Ben Sassi et al. 12]

@ LP relaxations = scalability
© Convex approximations of nonconvex sets = coarse

© No convergence guarantees (very often)
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Related work: Lasserre hierarchy

‘V"Cast a polynomial optimization problem as an
infinite-dimensional LP over measures [Lasserre 2001]

Fi=inff(x) = inf /f

xeX HeEM (X
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Related work: Lasserre hierarchy

‘V"Cast a polynomial optimization problem as an
infinite-dimensional LP over measures [Lasserre 2001]

Fi=inff(x) = inf /f

xeX peMy(X

(ﬂ@
~~ Regions of attraction [Henrion-Korda 14] / ‘

~» Maximum invariants [Korda et al. 13]

~ Invariant 1D densities [Henrion 2012] "‘

~~ Maximal positively invariants [Oustry-Tacchi-Henrion 2019]
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Related work: Lasserre hierarchy

SDP approximation of polynomial images of semialgebraic
sets [M.-Henrion-Lasserre 15]

B X; = f(Xp) € X, with X C R" a box or a ball
—> Discrete-time system with a single iteration

m V" Approximation of image measure supports
— certified SDP over approximations of X;

m X; = f1(Xo)
O deg f' =d xt = very expensive computation

© Would only approximate X; and not X*
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Contributions

m General framework to approximate X*
@ No discretization is required
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Contributions

m General framework to approximate X*
@ No discretization is required

m Infinite-dimensional LP formulation
'V'support of measures solving Liouville’s Equation

m Finite-dimensional SDP relaxations
B X®CXP={xeX:w(x)>1}
@ Strong convergence guarantees

lim; 00 vOI(X°\X®) = 0
@ Compute w, by solving one semidefinite program
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Infinite LP Formulation for Polynomial Optimization



What is Semidefinite Programming?

m Linear Programming (LP):

. T
min ¢ z
z

st. Az>d.

m Linear cost ¢

m Linear inequalities “Y; Ajjzj > d;” Polyhedron
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What is Semidefinite Programming?

m Semidefinite Programming (SDP):

. T
mm ¢ Z
z

s.t. ZFZ' zi = Fp .
i

m Linear cost ¢

m Symmetric matrices Fy, F;

m Linear matrix inequalities “F 3= 0" Spectrahedron
(F has nonnegative eigenvalues)
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What is Semidefinite Programming?

m Semidefinite Programming (SDP):

. T
mim ¢ z
z

s.t. ZFiZi#FO , Az=d.
i

m Linear cost ¢

m Symmetric matrices Fy, F;

m Linear matrix inequalities “F 3= 0" Spectrahedron
(F has nonnegative eigenvalues)
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SDP for Polynomial Optimization

Prove polynomial inequalities with SDP:
f(a,b) :=a*—2ab+1*>>0 .

Find z s.t. f(a,b) = (a b) (Z Z) (Z) .
N——

=0
m Find zs.t. a2 —2ab + b? = 214> + 2z0ab + z3b* (Az = d)

2oz _ (1 0y, (0 1\ (0 0) (00
z z) \0 0/ 1 0/ N0 1)2%7 0 0

Fy ) F3 Fo
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SDP for Polynomial Optimization

m Choose a cost ce.g. (1,0,1) and solve:

. T
mim ¢ zZ
z

st. ) Fizi=F, Az=d.
i

m Solution (Zl Zz) = ( 1 1) =0 (eigenvalues 0 and 2)
Zy 23 —1 1
ma?—2ab+b* = (a b) (e = (a—Db)>.
-1 1 b
—_————
=0
m Solving SDP — Finding SUMS OF SQUARES certificates
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SDP for Polynomial Optimization

NP hard General Problem: f* := min f(x)

xeX
m Semialgebraic set X := {x e R" : g1(x) > 0,...,g/(x) > 0}
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SDP for Polynomial Optimization

NP hard General Problem: f* := mi)r(lf(x)
Xe

m Semialgebraic set X := {x e R" : g1(x) > 0,...,g/(x) > 0}
X:[0,1]2:{x€]R2:x1(1—x1)>O, x2(1—x2)>0}
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SDP for Polynomial Optimization

NP hard General Problem: f* := mi)r(lf(x)
Xe

m Semialgebraic set X := {x e R" : g1(x) > 0,...,g/(x) > 0}
X:[0,1]2:{x€]R2:x1(1—x1)>O, XZ(].—Xz)ZO}

f
~ =
X1Xp =
70 (%] (%}
> = 81 N~ 82
—+<x1+x2—2> + 5 x1(1—x1) + 5 x2(1 — x2)
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SDP for Polynomial Optimization

NP hard General Problem: f* := mi)r(lf(x)
Xe

m Semialgebraic set X := {x e R" : g1(x) > 0,...,g/(x) > 0}
X:[0,1]2:{x€]R2:x1(1—x1)>O, XZ(].—Xz)ZO}

f
~ =
X1Xp =
70 (%] (%}
> N &1 - F'¢)
1 1 1 1 — 1 —
_§+§ x1+xz—§ + 5 x1(1—x1) + 5 x2(1 = x2)

m Sums of squares (SOS) o;
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SDP for Polynomial Optimization

NP hard General Problem: f* := mi)r(lf(x)
Xe

m Semialgebraic set X := {x e R" : g1(x) > 0,...,g/(x) > 0}
X:[0,1]2:{x€]R2:x1(1—x1)>O, XZ(].—Xz)ZO}

f
~ =
X1Xp =
70 (%] (%}
> N &1 - F'¢)
1 1 1 1 — 1 —
_§+§ x1+xz—§ + 5 x1(1—x1) + 5 x2(1 = x2)

m Sums of squares (SOS) ¢;
m Bounded degree:
Qr(X) := {(To + 25-21 0igj, With degojg; < 21’}
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SDP for Polynomial Optimization

m Hierarchy of SDP relaxations:
my = sup{m cf—-me Qr(X)}

m

m Convergence guarantees m, 1 f* [Lasserre 01]
m Can be computed with SDP solvers (CSDP, SDPA)

= “No Free Lunch” Rule: ("*?") SDP variables
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Primal-dual Moment-SOS [Lasserre 01]

=it = inf /X Fdyu

xeX HEM

5o f

0 xr 1
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Primal-dual Moment-SOS [Lasserre 01]

m Let (x*),enn be the monomial basis

Definition
A sequence z has a representing measure on X if there exists a
finite measure ;. supported on X such that

za:/x“y(dx), VaeN".
X
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Primal-dual Moment-SOS [Lasserre 01]

m M (X): space of probability measures supported on X
m Q(X): combining sums of squares and polynomials g;

from X
Polynomial Optimization Problems (POP)
(Primal) (Dual)
inf /dey = sup m
st peMi(X) st. meR,
f—me Q(X)
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Primal-dual Moment-SOS [Lasserre 01]

m Finite moment sequences z of measures in M (X)
m Truncated quadratic module Q,(X)

Lasserre’s Hierarchy for Polynomial Optimization

(Moment) (SOS)
inf ) fuza = sup m
s.t. Mr_rj(gjz) =0, 0<j<], st. meR,
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Infinite LP Formulation for RS



Characterizing the RS

CHARACTERIZE A VALUE CHARACTERIZE A SET

“—inf f(x) = inf / d ?
f= 0= g KT
) f
Dirac measure y* = 6,opt Lebesgue measure 1" = Ay~
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Occupation Measures and Liouville’s Equation

xi+1 = f(x¢) %0 € Xo

x1 = f(x0)...xt = f(x¢—1)

m Let Ho € M+(X0)

m Pushforward f4 : M (Xo) - M4 (X)
H1(A) = fypo(A) := po(f(A))

® fy1 is the image measure of j, under f
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Occupation Measures and Liouville’s Equation

m Let jp € M4 (Xp) and
#1= fapo

U = f# Hi—1
t—1 t=1
vi=Y =) futo
i=0 i=0

m The measures 1, v, j1o satisfy Liouville’s Equation:

He+ve = fave 4+ 1o
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Occupation Measures and Liouville’s Equation

m Lebesgue measure Ay, on X; = f/(Xo)

u ELMOJ S M+(X0) s.t. )\x[ = fi Hot
—> Ay, satisfies Liouville’s Equation.
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Occupation Measures and Liouville’s Equation

m Lebesgue measure Ay, on X; = f/(Xo)

u E|]/l(),t € M+(X0) s.t. )\x[ = fi Hot
—> Ay, satisfies Liouville’s Equation.

m Lebesgue measure Ayr on X' := UL, X;
= Ayr satisfies Liouville’s Equation by superposition

Victor Magron SDP Approximations of Reachable Sets 17 /34



Occupation Measures and Liouville’s Equation

m Lebesgue measure Ay, on X; = f/(Xo)

m Juor € M4 (Xo) St Ax, = fhpor
—> Ay, satisfies Liouville’s Equation.

m Lebesgue measure Ayr on X' := UL, X;
= Ayr satisfies Liouville’s Equation by superposition

Axr + T :f#vT—l—yg

average occupation measure v’ : measures time spent in X’
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Volume Assumption

Discrete Time

Define Y’ := X% and Y := X;\X' "1,

T
lim ZtvolYf < 0.

T—o0 =0
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Volume Assumption

Discrete Time

Define Y’ := X% and Y := X;\X' "1,

T
lim ZtvolYf < 0.

T—o0 =0

Under Volume Assumption, Ax~ satisfies Liouville’s Equation I
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Volume Assumption

Discrete Time

Define Y’ := X% and Y := X;\X' "1,

T
lim ZtvolYf < 0.

T—o0 =0

Under Volume Assumption, Ax~ satisfies Liouville’s Equation I

B Ay =Y oAy — Ax=as T — oo

W v = fev 4oy = vl =Y ,v; has mass
<YL tvolY!
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Volume Assumption

Continuous Time

Define 7(x) = minimal time to reach x.

1
vol(X) /oo T(x)dx < oo.
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Volume Assumption

Continuous Time

Define 7(x) = minimal time to reach x.

1
VOI—()() /oo T(X)dx < 0.

Under Volume Assumption, Ax~ satisfies Liouville’s Equation I
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Infinite Primal LP for Discrete RS

T
p' = sup /y
o,V X
s.t. /1/ < TvolX
X
U+v=fav+pup

1< Ax
po € My (Xo), m,veE My(X)
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Infinite Primal LP for Continuous RS

T
p = Sup / ]/l
o,V X
s.t. /1/ < TvolX
X
p+div (fv) = o

n < Ax
1o € M4+(Xo), p,ve Mi(X)
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Infinite Primal LP for Continuous RS

T ._
p = sup /V
o,V X

s.t. /véTvolX
X

p+div (fv) = po
n < Ax
po € M4 (Xo), p,v e My(X)

/Xv(x) div fv = — /Xgradv(x) - f(x)dv
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Infinite Primal LP for Discrete/Continuous RS

Volume Assumption = optimal solution p* = Ax~ I
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Primal-dual LP in Discrete Time

Primal LP Dual LP

T._ dl := inf /(w(x) + Tu)dx
p ;01:;5/ /XI/{ 1,0,W X

st. ve C+(X0)

st. / < TvolX
X" Vo w—v—1¢eCi(X)

pAv = fav+io w € Cy(X)

B Ax u+vof—uvelCi(X)
o € M (Xo) u=0

1v e My (X) ueR,v,weC(X)
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Primal-dual LP in Continuous Time

Primal LP Dual LP

T._ d' := inf /(w(x) + Tu)dx
= su
b Hor}tl,)v /x ¥ wow - JX

st. ve CJF (XO)

st. / < TvolX
X" Vo w—v—1¢eCi(X)

p+div (fv) = po w € Cy(X)

# < Ax u+grado- f € Cy(X)
o € M (Xo) u=0

1v e My (X) ueR,v,weC(X)
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Zero Duality Gap

p’ = d" and 3 minimizing sequence (1, vy, wy) for dual LP.

up =0 = Volume Assumption = p! =dT = vol X®

Victor Magron SDP Approximations of Reachable Sets 25/34



SDP Strengthening of the Dual LP

Discrete Time

dl := inf /(w(x) + Tu)dx
X

u,0,w

st ve 9, (Xo)
w—v—1¢€ 9Q,(X)
u+vof—ove QyuX)
w e Q(X)
u>=0
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SDP Strengthening of the Dual LP

Continuous Time

dl := inf /)((w(x)+Tu)dx

1,0,w

st. ve Q,(Xp)
w—v—1¢€ 9Q,(X)
u+gradv- f € Q,4(X)
w e Q(X)
u>=0
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Strong Convergence Properties

Assume that X%, X*, X\ X* have nonempty interior.
No duality gap between primal and dual SDP: p] = d!.

Victor Magron SDP Approximations of Reachable Sets 28 /34



Strong Convergence Properties

Theorem

Assume that X%, X*, X\ X* have nonempty interior.
No duality gap between primal and dual SDP: p] = d!.
Dual SDP has optimal solution (u,, v, w,):

lim/ |wy 4+ 1, T — 1x=|dx = 0.
X

r—0o0

Victor Magron SDP Approximations of Reachable Sets 28 /34



Strong Convergence Properties

Theorem

Assume that X%, X*, X\ X* have nonempty interior.
No duality gap between primal and dual SDP: p] = d!.
Dual SDP has optimal solution (u,, v, w,):

lim/ |wy 4+ 1, T — 1x=|dx = 0.
X

r—0o0

Let X! := {x € X:0,(x) +u, T >0} DX,
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Strong Convergence Properties

Theorem

Assume that X%, X*, X\ X* have nonempty interior.
No duality gap between primal and dual SDP: p] = d!.
Dual SDP has optimal solution (u,, v, w,):

lim/ |wy 4+ 1, T — 1x=|dx = 0.
X

r—0o0

Let X! := {x € X:0,(x) +u, T >0} DX,
u, = 0 = Volume Assumption = lim,_,c vol(X{°\X*) = 0.

4
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Application Examples



Toy Example

1

Trajectories from X := {x € R?: (x; — 5)*+ (x2 —

1
x;’ = E(xl +2x1%2),

1
Xy = §(x2 —2x3),
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Toy Example

Trajectories from X := {x € R?: (x; — 1)2+ (xo — $)? < 1} under

1

xl+ = E(xl +2x1%2),
1

xy = E(xz —2x3),
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Toy Example

Trajectories from X := {x € R?: (x; — 1)2+ (xo — $)? < 1} under

1

xl+ = E(xl +2x1%2),
1

xy = E(xz —2x3),
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Toy Example

Trajectories from X, := {x € R?: (x; — 3)* + (x2 — 5)> < 1} under

1
xl+ = E(xl +2x1%2),

1
Xy = §(x2 —2x3),
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Toy Example

Trajectories from X, := {x € R?: (x; — 3)* + (x2 — 3)> < 1} under

1
xf = E(xl +2x1%72),

1
x2+ = E(xz - Zx?) ,
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FitzHugh-Nagumo Neuron Model

Trajectories from X, := [1,1.25] x [2.25,2.5] under
X =21 +0.2(x1 — x7/3 — x2 + 0.875),
x2+ =Xy + 0.2(0.08(361 + 0.7 — O.SXZ)) ,

a T T - ™ T — T T
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FitzHugh-Nagumo Neuron Model

Trajectories from X := [1,1.25] x [2.25,2.5] under
X =1 +02(x — x5 /3 — x5 +0.875),
xy :=xp +0.2(0.08(x1 + 0.7 — 0.8x7)),

3
T T -—-J- ™ --I...,-_
-

4 };F?;,{ ;,;:.%i@ﬁ{ﬁﬁ R
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FitzHugh-Nagumo Neuron Model

Trajectories from X := [1,1.25] x [2.25,2.5] under

x| =1 +02(x1 — x5 /3 — x5 +0.875),
xy :=xp +0.2(0.08(x1 + 0.7 — 0.8x3)),

oy

IR %J}xvﬁﬁiﬁ i i
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FitzHugh-Nagumo Neuron Model

Trajectories from X, := [1,1.25] x [2.25,2.5] under

X =21 +0.2(x1 — x7/3 — x2 + 0.875),
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Julia Map

Trajectories from X, := {x € R?: ||x||3 < 0.1} under

Xg> with ¢c; = —0.7 and ¢, = 0.2
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Julia Map

Trajectories from X, := {x € R?: ||x||3 < 0.1} under

=3 — x5 +cq,

= 2x1X2 +C2,

Xgo with ¢ = —0.7 and ¢ =—02
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Julia Map

Trajectories from X := {x € R?: ||x||3 < 0.12} under

e 42 2
xf =x]— X3+,

x2+ = 2x1X2 +C2,

X2 with ¢y = —0.9 and c; = 0.2
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Julia Map

Trajectories from X, := {x € R?: ||x||3 < 0.1} under

. 2 2
xl+ =x]— x5+,

Xy =2x1Xp + Ca,

Xgo with¢; = —0.9and ¢, = —0.2
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Conclusion and Perspectives



Conclusion and Perspectives

@ Certified Approximation of the whole reachable set X*
; e (nt2rd :

© Computational complexity: ("*>"*) SDP variables

@ Structure sparsity may be exploited

V" Exploiting Sparsity for Volume Computation [Tacchi et al. 19]
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Conclusion and Perspectives

Further research

m Volume Assumption: limr_,. Y t vol Y! < oo
always true?

m Exact certification: X! = {x € X : v,(x) +u,T > 0} 2 X"
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Perspectives: Exact Certificates

APPROXIMATE SOLUTIONS

sum of squares of a> — 2ab + b*? (1.00001a — 0.99998b)!

N\

a* — 2ab + b* ~ (1.00001a — 0.99998b)>
a® — 2ab + b* # 1.0000200001a% — 1.9999799996ab + 0.99996000045>

~ = =7
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Conclusion and Perspectives

Win Two-PLAYER GAME

~» Univariate optimization [M.-Safey El Din-Schweighofer 18]
~» Multivariate optimization [M.-Safey El Din 18]

’sum of squares of f? ‘
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Thank you for your attention!
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