Bridging the Gap Between Requirements and Model
Analysis: Evaluation on Cyber-Physical Challenge
Problems

Robust Software Engineering Group
NASA Ames Research Center, CA, USA

Hamza Bourbouh
hamza.bourbouh@nasa.gov

06,/20/2019

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 1/51

@ Introduction

© FRET and Past Time Metric LTL
© Lustre & CoCoSpec

@ CoCoSim

© Lockheed Martin Challenge Problems
@ LM challenge 2: Finite State Machine
@ LM challenge 8: 6DOF with DeHavilland Beaver Autopilot
@ LM challenges results

@ Lessons learned

@ Conclusion

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 2 /51

Outline

@ Introduction

hamza.bourbouh®nasa.gov FRET-CoCoSim

Survey on Model-Based Software Engineering and

Auto-Generated Code!

100%
o
£ 80%
B
2 60%
=
£ 40%
=
20% I I I I
0% I
2 s =z = = 8 @ @ e 5 s E s
2 8 B g B 8 5 5 L £ B E % g S8
= g2 =B = = S =2 2 =2 S £ wE = = 5
£ B = = = = = 3 = @ s £ = 51 3
s o B2 13 =3 = = =1 o = T S = <
g B £ £ =3 1 k=) 2 = ¢ S E E s <
= 1 = 2 B = = < = = S 5 © = -
5 3 =
= £ 32 S z 2 = =4 = =2 2 S0 < 2
z EE 8 £ 8 s s 3 =8 g s
= = E © % = 2 = S v == = =
§ 55 £] S = = = =5 8 =» = S
E g2 & = = = = = =TS ®S5 B2 =
g & 8 £ e S > S s s ® =28 s =
S 2 o s = = H] = SZ = =
S £ = = o = k=1 = E > 8 =
s £ S = = E] = 2 £
£ s = = S = = S = £ =
£ s =1 = £ =8 2 <
= =4 = Es E =
=1 = 2
s E £

Type of bugs

™ In models ™ In auto-generted code

Figure: Types of bugs observed in the models and auto-generated code (responses
to each part of question ranged from 11 to 35)

INASA/TM-2016-219443

hamza.bourbouh®nasa.gov FRET-CoCoSim

Introduction

Safety-critical development process

@ High-level requirements are incrementally refined.
@ Verification and validation at each level.

@ Development process preserves the requirements.

| N\

Challenge

Difficult to make a formal connection between specifications and software
artifacts.

| A\

Motivation

@ Providing requirements written in restricted natural languages with
formal semantic (FRET).

@ Attaching system requirements to software artifacts
(FRET-CoCoSim).

@ Analyzing the model against those requirements (CoCoSim).

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 5/51

FRET: Formal Requirements Elicitation Tool

FRET is a framework for the elicitation, formalization, and understanding
of requirements.

FRET Team

Anastasia Mavridou Johann Schumann

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 6 /51

/

CoCoSim: Contract based Compositional verification of Simulink

models.
CoCoSim is an automated analysis and code generation framework for
Simulink and Stateflow models.

CoCoSim Team

... and many others from
The University of lowa,
Onera - France,

Khanh Trinh (NASA Ames)

Hamza Bourbouh Pierre-Loic Garoche

06/20/2019

hamza.bourbouh®nasa.gov FRET-CoCoSim

FRET-CoCoSim workflow

natural language
requirements

Simulink model with
- Connected Monitors

1Simulink In SLDV

Y

Signal info

Y
FRETish
requirements

At (2b)
7]

(pmLTL formulas) FRET-to-Model
mapping

Export monitors to
SLDV library

Simulink model with
Connected Monitors| 7~ 'C;)' - ': -
1
1
1

Analysis
. |
! Kind2
___________ ! Lustre + spec e = Zustre

FRET CoCoSim

CoCoSpec code
+
Traceability Info

Figure: FRET-Workflow

hamza.bourbouh@®nasa.gov FRET-CoCoSim

Outline

© FRET and Past Time Metric LTL

hamza.bourbouh®@nasa.gov FRET-CoCoSim 20/2019 9 /51

FRET and Past Time Metric LTL

@ Users enter system requirements in a restricted English-like natural
language called FRETish.

@ FRETish contains up to six fields: scope, condition, componentx,
shall*, timing, and responsex. Mandatory fields are indicated
with an asterisk.

e scope field specifies the period where the requirement holds. If
omitted, the requirement is deemed to hold universally.

e condition field is a Boolean expression that further constrains when
the requirement response shall occur.

e component field specifies the component that the requirement refers
to.

e timing field specifies when the response shall happen. For instance:
immediately, always, after N time units, etc.

e response is either an action that the component must execute, or a
Boolean condition that the component’s behavior must satisfy.

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 10 / 51

Syntax: scope, component, shall, timing, response

AP-002: In roll_hold mode RollAutopilot shall always satisfy
autopilot_engaged & no_other_lateral_mode

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 11 /51

FRET Output

For each requirement, FRET generates two LTL-based formalizations in:
© pure Future Time Metric LTL; and

@ pure Past Time Metric LTL (we refer to it as pmLTL).

The syntax of the generated formulas is compatible with the NuSMV
model checker.

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 12 / 51

Past Time Metric LTL

Past time operators (Y, 0, H, S)

@ Y (for ‘Yesterday'): At any non-initial time, Yf is true iff f holds at
the previous time instant.

@ 0 (for ‘Once’): Of is true iff f is true at some past time instant
including the present time.

@ H (for ‘Historically’): Hf is true iff f is always true in the past.

@ S (for ‘Since’): fSg is true iff g holds somewhere at point t in the
past and f is true from that point on.

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 13 / 51

Past Time Metric LTL

Time-constrained versions of past time operators

Op [I,r] f, where O, € {0, H, S}and /,re NO.
@ H [/, r] fis true at time t iff f holds in all previous time instants t’
suchthat t —r <t/ <t—|I.
@ O [/,r] f is true at time t iff f was true in at least one of the previous
time instants t’ such that t — r <t/ <t — /.

e f S[l,r] g is true at time t iff g holds at point ¢’ in the past such
that t —r <t/ < t—/and f is true from that point on.

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 14 / 51

Outline

© Lustre & CoCoSpec

hamza.bourbouh®nasa.gov FRET-CoCoSim

Lustre synchronous dataflow language

@ Lustre code consists of a set of nodes that transform infinite streams
of input flows to streams of output flows.
@ A symbolic “abstract” universal clock is used to model system
progress
@ Two important Lustre operators are
o Right-shift pre (for previous) operator: at time t =0, pre p is
undefined, while for each time instant t > 0 it returns the value of p at
t — 1. Example:
t 0 1 2 3
p 11|12 |13 | 14
pre(p) | - | 11 | 12 | 13
o Initialization -> (for followed-by) operator: At time t =0, p -> g
returns the value of p at t = 0, while for t > 0 it returns the value of g
at t.

t o1 | 2] 3
x0 0 2 4 6
p 11 |12 | 13 | 14
x0 -> pre(q) | 0 | 11 | 12 |13

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 16 / 51

Example of pmLTL operators in Lustre

@ Historically
node H(X:bool) returmns (Y:bool);

let
Y = X -> (X and (pre Y));
tel
@ Since
--Y S X
node S(X,Y: bool) returns (Z:bool);
let
Z = X or (Y and (false -> pre Z));
tel
@ Once
node 0(X:bool) returns (Y:bool);
let
Y = X or (false -> pre Y);
tel

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 17 / 51

@ CoCoSpec extends Lustre with constructs for the specification of
assume-guarantee contracts.

@ CoCoSpec assume-guarantee contracts are pairs of past time LTL
predicates.

@ A CoCoSpec contract can have:

internal variable declarations

assume (A) statements

guarantee (G) statements

mode declarations consist of require (R) and ensure (E)
statements

@ A node satisfies a contract C = (A, G') if it satisfies H A = G’, where
G'=GU {R = E}.

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 18 / 51

Example: Stopwatch implementation

node stopwatch (toggle, reset : bool) returns (

count : int);
(*@contract import stopwatchSpec(toggle, reset)
returns (count) ; *)
var running : bool;
let
running = (false -> pre running) <> toggle ;
count =
if reset then O
else if running then 1 -> pre count + 1
else 0 -> pre count ;
tel

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 19 / 51

Example: Stopwatch Specification

contract stopwatchSpec(toggle, reset bool) returns

(time : int) ;
let

var on: bool = toggle -> (pre on and not toggle)

or (not pre on and toggle) ;

assume not (toggle and reset) ;
guarantee time >= 0 ;
mode resetting (
require reset ;
ensure time = 0 ;
);
mode running (
require (not reset) and on;
ensure true -> time = pre time + 1 ;
)
mode stopped (
require (not reset) and (not omn) ;
ensure true -> time = pre time ;

); tel
06/20/2019 20 / 51

FRET-CoCoSim

hamza.bourbouh@®nasa.gov

Outline

@ CoCoSim

hamza.bourbouh®nasa.gov FRET-CoCoSim

CoCoSim

LT

Simulink Model

Simulink Blocks

P Public
Pre-Processing API
Engine
Internal
Representation Public
Generation API
Engine
Intermediate formal .
. Public
Language Generation
p AP|
Engine

.- .

Verification
Engine

Public
API

Code generation
Engine

Public
API

Test-case generation
Engine

Public
API

hamza.bourbouh@®nasa.gov

FRET-CoCoSim

/2019

22 / 51

Simulink/
Stateflow
Lustre
{V
i ; Test-case
Property Checkin
perty g Code Generation B renterrd
]
C RUST MC-DC White.-box
testing

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 23 /51

CoCoSim: Unsupported blocks (1/4)

Library # supp. | % supp. | Unsupported blocks
Blocks Blocks

Discontinuities 11 91% Backlash

Discrete 19 90% Discrete PID Controller, Dis-
crete PID Controller (2DOF)

Logic & Bit 18 95% Extract Bits

Operations.

Lookup Tables. 9 100%

Math Opera- 31 83% Algebraic Constraint, Com-

tions. plex to Magnitude-Angle,
Complex to Real-Imag, Find,
Magnitude-Angle to Com-
plex, Real-Imag to Complex

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 24 / 51

CoCoSim: Unsupported blocks (2/4)

Library # supp. | % supp. | Unsupported blocks
Blocks | Blocks
Model Verif. 11 100%
Ports & Sub- 29 93% | While Iterator Subsystem,
systems. While Iterator
Signal Att. 13 93% Unit Conversion
Signal Routing. 13 52% Data Store Memory/Read-

/Write, Env. Controller,
Goto Tag Visibility, Index
Vector, State Reader, State
Writer, Variant Source, Vari-
ant Sink, Manual Variant
Source, Manual Variant Sink

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 25 /51

CoCoSim: Unsupported blocks (3/4)

Library # supp. | % supp. | Unsupported blocks
Blocks Blocks
Sinks. 9 100%
Sources. 15 57% Band-Limited White Noise,

Counter Free-Running,
Counter Limited, From File,
From Spreadsheet, Repeat-
ing Sequence, Repeating
Sequence Interpolated,
Repeating Sequence Stair,
Signal Editor, Signal Gener-
ator, Waveform Generator

hamza.bourbouh@®nasa.gov

FRET-CoCoSim

06/20/2019

26 / 51

CoCoSim: Unsupported blocks (4/4)

Functions.

Library # supp. | % supp. | Unsupported blocks
Blocks Blocks
User-Defined 1 6% Argument Inport, Argument

Outport,
Event Listener, Function
Caller, Initialize Func-

tion, MATLAB Function,
Interpreted MATLAB Func-
tion, Level-2 MATLAB

S-Function, MATLAB
System, Reset Function,
S-Function, S-Function

Builder, Simulink Function,
Terminate Function

hamza.bourbouh@®nasa.gov

FRET-CoCoSim

06/20/2019

27 / 51

© Lockheed Martin Challenge Problems
@ LM challenge 2: Finite State Machine
@ LM challenge 8: 6DOF with DeHavilland Beaver Autopilot
@ LM challenges results

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 28 / 51

Lockheed Martin Challenge Problems

LM Aero Developed Set of 10 V&V Challenge Problems
Each challenge includes:

e Simulink mode
o Parameters
e Documentation Containing Description and Requirements

@ Difficult due to transcendental functions, nonlinearities and
discontinuous math, vectors, matrices, states

Challenges built with commonly used blocks

Publicly available case study. The challenges can be found in
https://github.com/hbourbouh/1m_challenges

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019

https://github.com/hbourbouh/lm_challenges

Overview of Challenge Problems

Triplex Signal Monitor

Finite State Machine

Tustin Integrator

Control Loop Regulators

NonLinear Guidance Algorithm

Feedforward Cascade Connectivity Neural Network
Abstraction of a Control (Effector Blender)

6DoF with DeHavilland Beaver Autopilot

System Safety Monitor

Euler Transformation

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019

Type of Simulink blocks used in the Challenges

Some of the blocks make verification difficult due to:

@ Transcendental Functions: Such as the trigonometric functions.
Challenge 7 (AP) uses cos, sin, atan2, asin. Challenge 9 (EUL) uses
sin and cos.

@ Nonlinearities and Discontinuous Math: Such as Abs, MinMax,
Saturation, Switch. Inverse of Matrix (3 by 3 and 5 by 5 Matrices)
are used in Challenge 6 (EB) and 7 (AP).

e Multidimensional Arrays: Challenges 6 (EB) and 7(AP) use the
inverse of matrices, which is abstracted in Lustre. Additionally,
challenge 7 (AP) manipulates Quaternions with some advanced
Quaternion operations (e.g. Quaternion Modulus, Quaternion Norm
and Quaternion Normalize).

o States: Blocks such as Delay and Unit Delay are used in the majority
of LMCPS. They are used to access memories of signals up to n steps
back (n=1 for UnitDelay).

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 31 /51

Type of Simulink blocks used in the Challenges

Model # Blocks | Block Types used

0_triplex 479 "Abs’, 'Action Port’, 'Constant’, 'Delay’, 'De-
mux’, 'From’, 'Goto" 'If’, ’lnport’, ’'Logic’,
'Merge’, "Mux’, 'Outport’, 'Product’,
'Relational Operator’, 'Selector’, 'Signal
Conversion’, 'Subsystem’, 'Sum’, ’'Switch’,
"Terminator’

1_fsm 279 'Action Port’, 'Constant’, 'Demux’, 'From’,
'Goto', 'If’, 'Inport’, 'Logic’, 'Merge', 'Mux’,
'Outport’, 'Relational Operator’, 'Signal Con-
version’, 'Subsystem’, 'Switch’, 'Unit Delay’

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 32 /51

Type of Simulink blocks used in the Challenges

Model # Blocks | Block Types used

2_tustin 45 'DataType Duplicate’, 'Data Type Propaga-
tion', 'From’, 'Gain’, 'Goto’, 'Inport’, 'Outport’,
'Product’, 'Relational Operator’, 'Saturation
Dynamic’, 'Subsystem’, 'Sum’, 'Switch’, 'Unit

Delay’
3_regulators 271 'BusCreator’, 'BusSelector’, "Con-
stant’, 'From’, ’'Gain’, 'Goto’, ’Inport’,

'Lookup_nD’, 'Math’, 'Memory’', 'Outport’,
'Product’ 'Relational Operator’, 'Saturate’,
'Saturation Dynamic’, 'Signal Conversion’,
'SubSystem’, 'Sum’, 'Switch’, 'Terminator’,
'UnitDelay’

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 33 /51

Type of Simulink blocks used in the Challenges

Model # Blocks | Block Types used

4 nlguide 355 "ActionPort’, 'Constant’, 'Demux’, 'Display’,
'DotProduct’, 'From’, 'Gain’, 'Goto’, 'If" |,
'Inport’, ’'InportShadow’, ’Logic’, 'Math’,
'Merge’, "Mux’, 'Outport’, "Product’,
'Relational Operator’, ’'Selector’, 'Sqrt’,
'SubSystem’, 'Sum’, 'Terminator’

5_nn 699 'ActionPort’, 'Constant’, 'Demux’, 'Gain’, 'If’,
'Inport’, 'Merge’, 'Mux’, 'Outport’, 'Product’,
'Saturate’, 'SubSystem’, 'Sum’

6_eb 75 'Constant’, 'Display’, 'Inport’, 'Math’, 'Out-
port’, ’'Product’, ’'Relational Operator’,
'Reshape’, ’'Selector’, 'SubSystem’, 'Sum’,
'Switch’

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 34 /51

Type of Simulink blocks used in the Challenges

Model # Blocks | Block Types used

7_autopilot 1357 'Abs’, 'BusCreator’, 'BusSelector’,
'Concatenate’, 'Constant’, 'Data Type Con-
version', 'Demux’, 'Display’, 'DotProduct’,
'Fcn’, 'From’, 'Gain’, 'Goto’, 'Ground’, 'Inport’,
'InportShadow’, 'Logic’, 'Lookup_nD’, 'Math’,
'MinMax’, 'Mux’, 'Outport’, 'Product’,
'RateLimiter’, 'Relational Operator’,
'Reshape’, 'Rounding’, 'Saturate’, 'Scope’,
'Selector’, 'Signum’, ’'Sqrt’, 'SubSystem’,
'Sum’, 'Switch’, 'Terminator’, 'Trigonometry’,
'UnitDelay’, 'CMBIlock’, 'Create 3x3 Ma-
trix’, 'Passive’, 'Quaternion Modulus’,
'Quaternion Norm’, 'Quaternion Normalize’,
'Rate Limiter Dynamic’

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 35 /51

Type of Simulink blocks used in the Challenges

Model | # Blocks | Block Types used

8_swim 141 "ActionPort’, ’'Constant’, 'Display’, 'Gain’,
If', ’lnport’, ’'Logic’, 'Merge’, ’'Outport’,
'Relational Operator’, 'Sqrt’, 'SubSystem’,
'Sum’, 'UnitDelay’

9_euler 97 'Concatenate’, 'Fcn’, 'Inport’, 'Mux’, 'Out-
port’, ’'Product’, 'Reshape’, 'SubSystem’,
'"Trigonometry’, 'Create 3x3 Matrix’

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 36 / 51

Finite State Machine Requirement Example

Exceeding sensor limits shall latch an autopilot pullup when the pilot is
not in control (not standby) and the system is supported without failures
(not apfail).

Exceeding sensor limits shall latch an autopilot pullup when the pilot is in
autopilot.

v

autopilot = Istandby & !apfail & supported)

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 37 /51

Finite State Machine Requirement Example

Exceeding sensor limits shall latch an autopilot pullup when the pilot is in
autopilot.

First interpretation:

limits & autopilot limits & autopilot

b !
° ° ° °
t

Second interpretation:

limits & autopilot limits & autopilot

: '
° ° ° °

hamza.bourbouh@®nasa.gov

FRET-CoCoSim 06/20/2019 38 /51

Finite State Machine Requirement Example

Exceeding sensor limits shall latch an autopilot pullup when the pilot is in

autopilot.
Third interpretation: Does autopilot should stay active when latching a

pullup?

limits & autopilot autopilot
o o ® o

pullup

FRET-CoCoSim 06/20/2019 39 /

hamza.bourbouh@®nasa.gov

Finite State Machine Requirement Example

Exceeding sensor limits shall latch an autopilot pullup when the pilot is in
autopilot.
First interpretation:

FSM shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

contract FSMSpec(apfail:bool; limits:bool; standby:bool;
supported:bool;) returns (pullup: bool;);

let

var FTP:bool=true -> false;

var autopilot:bool=supported and not apfail and not standby;

guarantee "FSMOO1" S((((limits and autopilot) => (pullup))
and FTP), ((limits and autopilot) => (pullup)));

tel

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 40 / 51

Finite State Machine Requirement Example

Exceeding sensor limits shall latch an autopilot pullup when the pilot is in
autopilot.

First interpretation:

—C

FSM shall always satisfy (limits & autopilot) => pullup

(('limits & autopilot) == pullup) S (((limits & autopilot) => pullup) & FTP)
FTP

false

z1
=] -

limits
autopilot @

S.X

supported AND Sz In1 guarantee
(1)—»{ NOT | »SY FSM001
apfail

hamza.bourbouh®@nasa.gov

FRET-CoCoSim 06/20/2019 41 / 51

Finite State Machine Requirement Example

Exceeding sensor limits shall latch an autopilot pullup when the pilot is in
autopilot.

autopilot

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 42 /51

Algebraic loop

Xa Xa

: N

Xa = u + 2xxa;

The generated Lustre that will be
rejected because of the circular
dependency.

Example of an algebraic loop
accepted by Simulink.

Figure: A simple example of an algebraic loop.

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 43 / 51

6DOF with DeHavilland Beaver Autopilot

Examples of requirements we needed domain expert help.

o AP-004a: Steady state roll commands shall be tracked within 1
degree in calm air.

@ AP-004b: Response to roll step commands shall not exceed 10%
overshoot in calm air.

Example of a requirement we could not formalize.

o AP-004c: Small signal (<3 degree) roll bandwidth shall be at least
0.5 rad/sec.

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 44 / 51

Challenge Problem Analysis Results

Kind2 SLDV

| Name | # Req | # Form | # An [V/IN/UN | V/IN/UN
Triplex Monitor 6 6 6 5/1/0 5/1/0
FSM 13 13 13 | 7/6/0 | 7/6/0
Tustin Integrator 4 3 3 2/0/1 2/0/1
Regulators 10 10 10 0/5/5 0/0/10
Feedforward NN 4 4 4 0/0/4 0/0/4
Effector Blender 4 3 3 0/0/3 0/0/0
6DoF Autopilot 14 13 8 5/3/0 | 4/0/4
Sys. Safety Moni- 3 3 3 2/1/0 0/1/2
tor (SWIM)
Euler Transf. 8 7 7 2/5/0 1/0/6

| Total | 66 62 | 57 |23/21/13] 19/8/27 |

hamza.bourbouh®@nasa.gov

FRET-CoCoSim

06/20/2019

45 / 51

Outline

@ Lessons learned

hamza.bourbouh@nasa.gov FRET-CoCoSim /2019 46 / 51

Lessons learned

@ Domain expertise is needed

o Frequently used patterns: used only 8/120 FRET patterns, mainly
invariants

@ Incomplete Requirements: requirements were not mutually exclusive

@ Scalability of the approach: tool-set keeps model hierarchy, contracts
deployed at different levels

@ Comparison of analysis tools: Kind2 faster usually than SLDV, also
returned results in more cases due to modular analysis

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 47 / 51

Lessons learned

@ Reasoning for violated properties: two ways

H(A => B)

o Check a weaker property by strengthening the preconditions A’ C A
and check H(A" => B)

o Check feasibility of B with bounded model checking H(—B) and return
counterexamples to help construct stronger preconditions for which B
is satisfied

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 48 / 51

Outline

@ Conclusion

hamza.bourbouh®nasa.gov FRET-CoCoSim

Our work supports. . .

@ Automatic extraction of Simulink model information

@ Association of high-level requirements with target model signals and
components

@ Translation of temporal logic formulas into synchronous data flow
specifications and Simulink monitors

@ Interpretation of counterexamples both at requirement and model
levels

hamza.bourbouh@nasa.gov FRET-CoCoSim 06/20/2019 50 / 51

Bridging the Gap Between Requirements and Model
Analysis: Evaluation on Cyber-Physical Challenge
Problems

Robust Software Engineering Group
NASA Ames Research Center, CA, USA

Hamza Bourbouh
hamza.bourbouh@nasa.gov

06,/20/2019

hamza.bourbouh®@nasa.gov FRET-CoCoSim 06/20/2019 51 /51

	Introduction
	FRET and Past Time Metric LTL
	Lustre & CoCoSpec
	CoCoSim
	Lockheed Martin Challenge Problems
	LM challenge 2: Finite State Machine
	LM challenge 8: 6DOF with DeHavilland Beaver Autopilot
	LM challenges results

	Lessons learned
	Conclusion

