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Energy Consumption Concern

Top 500 supercomputers energy consumption ' $400 million/year
How to increase energy efficiency ?

Green Computing : http ://www.green500.org
Reduce application energy consumption
Sacrifice accuracy for performance⇒ Floating-point precision tuning
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What About...

Computer architectures support multiple levels of precision
• Higher precision : improves accuracy
• Lower precision : reduces energy, running time and bandwidth capacity

Automatically tune floating-point precision is challenging
• Without affecting correctness
• Improving performance

Precision vs Accuracy !
Precision : number of bits representing a value (its format)
Accuracy : how close a floating-point computation comes to the real value !
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Related Work

TWIST
Static analysis by constraints generation
TWIST [3]

CRAFT, Precimonious/HiFPTuner
Search based methods
CRAFT [Lam’13 et al.], Precimonious/HiFPTuner [Rubio’13 et al.] [2]

FPTuner, Rosa/Daisy
Rigorous error analysis methods
FPTuner [Chiang’17 et al.], Rosa/Daisy [Darulova’14 et al.]

Herbie, Salsa
Automatically discovering unstable floating-point operations and
applying transformations
Herbie [Panchekha’14 et al.], Salsa [DM18]
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Basic Concepts on Floating-Point Numbers
mantissa mSign s exponent e

precision p

A floating-point number x in base β :

x = s.m.βe−p+1

• s the sign, m the mantissa, e the exponent encoded in the bit string and p
is the format precision

IEEE-754 Formats

format bit width
mantissa size
(p - 1) exponent size bias

binary16 16 10 5 15
binary32 32 23 8 27
binary64 64 52 11 1023
binary128 128 112 15 16383
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Ufp and Ulp Functions

Weight of the most significant bit :

ufp(x) = min{i ∈ N : 2i+1 > x} = blog2(x)c

Weight of the least significant bit :

ulp(x) =

{
e− p round to nearest,

e + 1− p otherwise.

Fp : Set of floating point numbers : |v− v̂| ≤ 2e−p+1

∀x ∈ Fp, ulp(x) = ufp(x)− p + 1

Error on x :
ε(x) ≤ 2ulp(x)

s e 2e 2 e-p+1

ufp ulp
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Abstract Domain

Abstract Values : [a, b]p interval of Fp

e.g : x, y ∈ [1.0, 3.0]16, |v− v̂| ≤ 2ufp(x)−15

Concretization function :

γ([a, b]p) = x ∈ Fp : a ≤ x ≤ b

Partial order :

[a, b]p v [c, d]q ⇔ [a, b] ⊆ [c, d] ∧ q ≤ p

[a, b]p is more precise than [c, d]q with a greater accuracy
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Concrete Addition in Fp

+

x

y

p'

q'

r'

ufp(Ɛx+Ɛy)ufp(x+y)

Forward addition :p′ : size of εx, q′ : size of εy
−→⊕(xpp′ , yqq′ ) = zrr′ with r = ufp(x + y)− ufp(ε(x) + ε(y))

Backward addition :
←−⊕(zrr′ , yqq′ ) = (z− y)pp′ avec p = ufp(z− y)− ufp(ε(z)− ε(y))
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Abstract Addition in Ip

−→
�([1.0, 3.0]16, [1.0, 3.0]16) = [2.0, 6.0]16

←−
�([2.0, 6.0]10, [1.0, 3.0]16) = [1.0, 3.0]9

+

16 bits

17 bits

ufp ulp

= 

3#16

1#16

4#17

1 1

1 0 0

0

1 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

000000

0 0 0 0 0 0

0

−→⊕(1.016, 1.016) = 2.016
−→⊕(1.016, 3.016) = 4.017

−→⊕(3.016, 1.016) = 4.017
−→⊕(3.016, 3.016) = 6.016
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Concrete Multiplication in Fp

Forward multiplication :
−→⊗(xpp′ , yqq′ ) = zrr′ where r = ufp(x× y)− ufp(ε(x× y))

and ufp(ε(x× y)) = y.ε(x) + x.ε(y) + ε(x).ε(y)

Backward multiplication :

←−⊗(zrr′ , yqq′ ) = (z÷y)rr′ where p = ufp(z÷ y)− ufp
(

y.ε(zr)− z.ε(yq)

y.(y + ε(yq))

)

Note
Problem reduced to a system of constraints made of linear relations between
integer elements only
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Before Constraint Generation....

Preliminary range measure by static analysis (no overflow)
The accuracy may↙ in forward analysis Weaken the pre-conditions
The accuracy may↗ in backward analysis Strengthen the
post-conditions

z = x� y with � ∈ {+,−,×, /}

lower(AccB(z)) =


lower AccB(x) in order to lower AccB(z)
lower AccB(y) in order to lower AccB(z)
lower both AccB(x) and AccB(y)
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Systematic Constraint Generation

Expression : e : := c] p` | id` | e`1
1 +` e`2

2 | e`1
1 −` e`2

2 | e`1
1 ×` e`2

2 | e`1
1 ÷` e`2

2
Boolean : b : := true | false | e`1

1 <` e`2
2 | e`1

1 >` e`2
2 | e`1

1 =` e`2
2

Statement : c ::= c`1
1 ; c`2

2 | id =` e`1 | while` b`0 do c`1
1 | if ` b`0 then c`1

1 else c |
require_accuracy(x,n)`

l ∈ Lab unique label is attached to each expression and statement
Λ : Id → Id × Lab, x =l e`1

We assign to each label l three variables : accB(l), accF(l) and acc(l)

0 ≤ accB(l) ≤ acc(l) ≤ accF(l)
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Case of the Forward Addition (1/2)

a = ufp(x) b = ufp(y)

ε(x) ≤ 2a−p+1 ε(y) ≤ 2b−p+1 ε+ < 2a−p+1 + 2b−p+1

Definition :

+

ι = 1

ulp(εx)

ufp(εx)

y
+

x

y

ι = 0

ulp(εx)

ufp(εx)

x

ι(ε(x), ε(y)) =

{
0 if ulp(ε(x)) > ufp(ε(y))
1 otherwise.

Lemma 1 :

ufp(ε+) ≤ max(a− p, b− q) + ι(a− p, b− q)

r+ = ufp(x + y)− max(a− p, b− q)− ι(a− p, b− q)
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Case of the Forward Addition (2/2)

A = ufp(εx) B = ufp(εy) C = ufp(εz)

How to compute r′ = ufp(ε(z))− ulp(ε(z))?

ufp(Ɛz) ulp(Ɛz)

r'

We have :

U = ufp(εz) and u = ulp(εz)

U = ufp(z)− R

u = min
{

ufp(x)− p− p′ + 1
ufp(y)− q− q′ + 1.
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Case of the Forward Multiplication

ε(x) ≤ 2a−p+1, ε(y) ≤ 2b−p+1

ufp(ε×) ≤ 2a+1.2b−q+1 + 2b+1.2a−p+1 + 2a−p+1.2b−q+1

= 2a+b−q+2 + 2a+b−p+2 + 2a+b−p−q+2

ufp(ε×) ≤ max(a + b− p + 2, a + b− q + 2) + ι(p, q)

≤ max(a + b− p + 1, a + b− q + 1) + ι(p, q)

Thus :

r× = ufp(x× y)− max(a + b− p + 1, a + b− q + 1)− ι(p, q)

Linear constraints !
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Syntax of IMP

Expression : e : := constant | id | e + e | e - e | e × e | e ÷ e

Boolean : b : := true | false | e < e | e > e | e ≤ e | e ≥ e | e = e

Statement : c : := c ; c | id = e | while b do c | if b then c else c

Work Environment :
Java SE Development Kit 8

Eclipse IDE Java Oxygen.2 Release (4.7.2)

ANTLR4 IDE Eclipse Plugin for ANTLR 4 1

1. https ://github.com/antlr
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Example (2/4) :Constraints Semantic

ε[cl0
53]Λ = {accF(l0) = 53}

ε[cl2
53]Λ = {accF(l2) = 53}

ε[xl4 +l6 yl5 ]Λ = C[xl4 ]Λ ∪ C[yl5 ]Λ ∪ F+(l4, l5, l6) ∪ B+(l4, l5, l6)

C[z :=l7 x + yl6 ]Λ = (C,Λ[z→ zl7 ])

C[require_accuracy(z, 25)l9 ]Λ = {accB(Λ(z)) = 25)}
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Example (4/4) : Z3 SMT solver solution

x|25| = [1.0,2.0]|25|;
y|24| = [3.0,4.0]|24|;
z|25| = [1.0,2.0]|25| +|25| [3.0,4.0]|24|;
require_accuracy(z,25);

Number_Variables= 49

Number_Constraints = 57

Cost function
Solutions are not unique. We need to add an additional constraint related to a
cost function φ to the constraints

φ(c) =
∑

x∈Id,l∈Lab

acc(xl) +
∑

l∈Lab

acc(l)
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Policy Iteration

Motivation
Z3 SMT solver = decision tool 6=
optimization tool

Idea
Using Policy iteration to improve
accuracy [1]
Generated constraints are of the form
min-max of discrete affine maps
Feeding the policy iteration with the z3
solution as an initial policy !

Finality
Comparing the policy iteration and Z3
solutions (in term of execution time and
optimality)

y=
x

P1

P2

P3

P4

P5

x1x3x5

Choice of a new policy
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Conclusion

Floating-point computations determination minimal precision

Contribution

Forward & Backward static analysis for numerical accuracy
Formulation as first order linear constraints

Extensions : functions, arrays, fixed-point arithmetic, etc.

Minimal precision determination : Policy Iteration

Experimentally tool validation : embedded systems, numerical
computation, etc.
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