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Introduction

Dynamical systems operating over networks appear in many natural
and engineering systems.

Example applications include: robotics and autonomous spacecraft,
wind farm optimization, and multi-agent systems.
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Introduction

A popular model of such dynamic processes is consensus, which is a
distributed information-sharing protocol over a network where agents
are able to agree on a common value of interest.
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Analysis and Design of Consensus Network Systems

The first part of this talk addresses the problem of designing robust
consensus networks that are able to reject the adversarial exogenous
noise and disturbance inputs in the sense of the H∞-norm.

The state matrix of the consensus protocol is not Hurwitz, which
precludes analysis involving the H∞-norm.

▶ For a connected graph, we can rely on the edge consensus model to
perform the H∞ analysis.

We consider a network of single integrator agents operating on
independent time scales, connected by weighted edges, and corrupted
by exogenous disturbances.
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Relevant Literature

Relevant Prior Work

(Zelazo & Mesbahi, 2011)1
• Developed the edge consensus protocol

• Examined H2 and H∞ performance

(Foight et al., 2020)2
• Incorporated edge weights and time scales

• Examined H2 performance

• Formulated H2 minimization problems

1D. Zelazo, M. Mesbahi, Edge agreement: Graph-theoretic Performance Bounds and
Passivity Analysis, IEEE Transactions on Automatic Control 56 (3) (2011) 544-555.

2D. R. Foight, M. Hudoba de Badyn, M. Mesbahi, Performance and Design of
Consensus on Matrix-Weighted and Time Scaled Graphs, IEEE Transactions on Control
of Network Systems 7 (4) (2020) 1812-1822.
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Graph Theory

Consider a network of n
single integrator units
evolving at differing rates.

This configuration is
represented by an
undirected and connected
graph G = (V, E ,W ,E ),
where

V: set of nodes,
E : set of edges,
W : diagonal matrix of
(positive) edge weights,

E : diagonal matrix of
(positive) node time
scales.

ϵ1

ϵ2

ϵ3

ϵ4

w1 w2

w3w4

w5

V = {1, 2, 3, 4}, E = {12, 23, 34, 41, 13},

W =


w1 0 0 0 0
0 w2 0 0 0
0 0 w3 0 0
0 0 0 w4 0
0 0 0 0 w5

 ,

E =


ϵ1 0 0 0
0 ϵ2 0 0
0 0 ϵ3 0
0 0 0 ϵ4

 .
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Graph Theory

For the graph G:
1 The incidence matrix, which characterizes the

incidence relation between distinct pairs of nodes,
is

D(G) =


1 0 0 −1 1
−1 1 0 0 0
0 −1 1 0 −1
0 0 −1 1 0

 .
2 We also define the matrix R(G) =

[
I T c

τ

]
, with

T c
τ = (DT

τ Dτ )
−1DT

τ Dc ,

where

Dτ : incidence matrix of chosen spanning tree
subgraph,
Dc : incidence matrix of corresponding co-tree.

ϵ1

ϵ2

ϵ3

ϵ4

w1 w2

w3w4

w5

Figure: Red edges
are the chosen
spanning tree
edges. Black edges
are the
corresponding
co-tree edges.
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Edge Consensus

For a given spanning tree Gτ , the edge consensus model Στ
corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020){
ẋτ (t) = −Lτe,sRWRT xτ (t) + DT

τ E
−1Ωŵ(t)− Lτe,sRΓv̂(t),

z(t) = RT xτ (t),

where

xτ (t) ∈ Rn−1: vector of edge states associated with the spanning tree
edges,

Lτe,s = DT
τ E

−1Dτ : edge Laplacian for a spanning tree Gτ ,
ŵ(t): normalized Gaussian process noise signal, associated with the
nodes, with covariance matrix Ω,

v̂(t): normalized Gaussian measurement noise signal, associated with
the edges, with covariance matrix Γ,

z(t): monitored performance signal.
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H∞ Performance

Edge Agreement Protocol Στ
ẋτ (t) = −Lτe,sRWRT︸ ︷︷ ︸

A

xτ (t) +
[
DT
τ E

−1Ω −Lτe,sRΓ
]

︸ ︷︷ ︸
B

[
ŵ(t)

v̂(t)

]
,

z(t) = RT︸︷︷︸
C

xτ (t).

Then, Στ (s) = RT (sI + Lτe,sRWRT )−1
[
DT
τ E

−1Ω −Lτe,sRΓ
]
.

The H∞-norm of a stable LTI system with a transfer function Φ(s) is
defined as

∥Φ∥∞ = sup
ω∈R
{σ̄

(
Φ(jω)

)
}.

Lemma (Zelazo & Mesbahi, 2011)

The H∞-norm of the system Στ satisfies ∥Στ∥∞ = σ̄
(
Στ (0)

)
.
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H∞ Performance

Lemma

The H∞-norm of the system Στ satisfies

∥Στ∥2∞ ≥
(
λmin(Q)λmin(B

T
τ Bτ ) + λmin(F )λmin(B

T
c Bc)

)
λmax(J),

∥Στ∥2∞ ≤
(
λmax(Q)λmax(B

T
τ Bτ ) + λmax(F )λmax(B

T
c Bc)

)
λmax(J),

where Bτ = E−1Dτ , Bc = RTLτe,s , Q = ΩΩT , F = ΓΓT , and

J = A−TCTCA−1.

Hence, the H∞ performance of two systems having pairs of
covariance matrices that share the same maximum and minimum
eigenvalues will be governed by the same bounds.

The remainder of the results focus on the special choice of covariance

matrices Ω = σwE
1
2 and Γ = σvW

1
2 , and the resulting system will be

denoted by Σ̃τ .
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H∞ Performance

Theorem

The H∞-norm of the system Σ̃τ satisfies

∥Σ̃τ∥2∞ = σ̄(Z ),
where

Z = σ2wR
T (RWRTLτe,sRWRT )−1R + σ2vR

T (RWRT )−1R,

Lτe,s = DT
τ E

−1Dτ .

Theorem

The H∞-norm of the system Σ̃τ satisfies

∥Σ̃τ∥2∞ = σ̄(Z ),
where

Z = σ2wR
T (RWRTLτe,sRWRT )−1R + σ2v RT (RWRT )−1R ,

Lτe,s = DT
τ E

−1Dτ .

For W = I and E = I (Zelazo & Mesbahi, 2011):

∥Σ̃τ∥2∞ = σ̄
(
σ2wR

T (RRTDT
τ DτRR

T )−1R + σ2v RT (RRT )−1R
)

= σ2w σ̄(R
T (RRTLτeRR

T )−1R) + σ2v .
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H∞ Performance

Consider a modified system Πτ defined by

Πτ (s) = W
1
2 Σ̃τ (s).

Theorem

The H∞-norm of the system Πτ satisfies

∥Πτ∥2∞ = σ2w σ̄(X ) + σ2v ,

where
X = W

1
2RT (RWRTLτe,sRWRT )−1RW

1
2 .
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H∞ Performance

The expression of ∥Πτ∥2∞ can be used to calculate new upper and
lower bounds on the H∞-norm of the original system Σ̃τ .

Theorem

The H∞-norm of the system Σ̃τ satisfies

∥Πτ∥∞
λmax(W

1
2 )
≤ ∥Σ̃τ∥∞ ≤

∥Πτ∥∞
λmin(W

1
2 )
.

The upper bound to lower bound ratio η on ∥Σ̃τ∥∞ is

η =
λmax(W

1
2 )

λmin(W
1
2 )
.

If W = I (unweighted graph):

∥Σ̃τ∥∞ = ∥Πτ∥∞,

and the obtained bounds are equal.
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H∞ Performance
Numerical Example

To illustrate the obtained bounds, we consider the graph G.
The H∞-norm of the corresponding system Σ̃τ and the obtained
bounds are computed for different combinations of edge weights and
time scales.

ϵ2

ϵ8 ϵ7 ϵ10

ϵ3 ϵ5

ϵ9 ϵ4 ϵ6ϵ1
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Figure: Black edges correspond to the chosen spanning tree edges. Blue edges
correspond to the corresponding co-tree edges.
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Optimal Time Scales and Edge Weights

We derive new insights on the H∞-norm minimization problem.

Proposition

Consider the homogeneous bounds

wminI ⪯W ⪯ wmaxI , ϵminI ⪯ E ⪯ ϵmaxI .

Then, E = ϵminI and W = wmaxI minimize ∥Πτ (E ,W )∥∞.
Hence,

∥Σ̃τ∥∞ =
∥Πτ∥∞√
wmax

is also minimized.
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Optimal Time Scales and Edge Weights

We propose the following optimization paradigm if diversity of time
scales and edge weights is desirable in the particular application of
interest.

min ∥Πτ∥2∞ = σ2w σ̄(X ) + σ2v ⇔ minλmax(X )⇔ min ζ
s.t X ⪯ ζI ,

where X = W
1
2RT (RWRTLτe,sRWRT )−1RW

1
2 .

To formulate our problem as a convex optimization problem, we
minimize λmax(X1) instead, where

X1 = W− 1
2R†(Lτe,s)

−1(R†)TW− 1
2 ,

and
λmax(X1) ≥ λmax(X ).
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Optimal Time Scales and Edge Weights

Minimization Problem:

min
ζ,w

− 1
2

l ,ϵ−1
i

ζ

s.t X1 ⪯ ζI .

X1 ⪯ ζI ⇔

[
ζI W− 1

2R†

(W− 1
2R†)T Lτe,s

]
⪰ 0,

where Lτe,s = DT
τ E

−1Dτ .

▶ ϵi : time scale associated with node i ,
ϵ−1 = (ϵ−1

1 , . . . , ϵ−1
n ) and E−1 = diag(ϵ−1),

▶ wl : edge weight associated with edge l ,

w− 1
2 = (w

− 1
2

1 , . . . ,w
− 1

2

|E| ) and W− 1
2 = diag(w− 1

2 ).
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Optimal Time Scales and Edge Weights

1 To penalize small node time scales, a regularization term ∥ϵ−1∥2 is
added to the objective function.

2 To penalize large edge weights, a new variable ξ ∈ R|E| is introduced

such that w
1
2
l ≤ ξl ⇔W

1
2 ⪯ Ξ, with Ξ = diag(ξ).

Thus, a regularization term ∥ξ∥2 is added to the objective function
and the LMI [

Ξ I

I W− 1
2

]
⪰ 0

is added to the set of constraints.

3 To tighten the bounds on the H∞-norm of Σ̃τ , an upper bound γ is
imposed on the ratio η, which can be done through adding the convex
constraint

λmax(W
− 1

2 )− γλmin(W
− 1

2 ) ≤ 0.
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Optimal Time Scales and Edge Weights

We perform H∞-norm minimization by solving the following
semidefinite program:

minimize
ζ,w

− 1
2

l ,ϵ−1
i ,ξ

ζ + α∥ξ∥2 + β∥ϵ−1∥2

subject to

[
ζI W− 1

2R†

(R†)TW− 1
2 Lτe,s

]
⪰ 0,

w
− 1

2
max,l ≤ w

− 1
2

l ≤ w
− 1

2
min,l , ϵ−1

max,i ≤ ϵ
−1
i ≤ ϵ

−1
min,i ,[

Ξ I

I W− 1
2

]
⪰ 0,

λmax(W
− 1

2 )− γλmin(W
− 1

2 ) ≤ 0,

for all i ∈ V and l ∈ E , where α > 0 and β > 0 are weights on the
different components of the objective function.
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Formation Control Example

Consider a network of non-homogenous agents of ground and aerial
vehicles operating on multiple time scales.

Faster agents (aerial vehicles) are in green squares.

Slower agents (ground vehicles) are in blue ellipses.
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Formation Control Example

The agents are each assigned a
position.
▶ Slow agents: ‘∗’ markers on

the border of the inner square.

▶ Fast agents: ‘◦’ markers on
the border of the outer square.

The agents run a
one-dimensional consensus
protocol in two directions {z , y}.

t ∈ [2, 3] is a finite support of
randomly generated disturbance
signals on the nodes and edges.
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Formation Control Example

▶ NUD: Unity edge weights and time scales

▶ BUD: Optimal edge weights and time scales

Disturbance

        

Figure: Edge states in the y direction over time.
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Model Reduction of Consensus Network Systems

As network systems increase in size and complexity, it becomes
desirable to find lower order approximant network models.

This part proposes H∞- and H2-based model reduction (MR)
methods for approximating the input-output behavior of a given
consensus network system Σ (n agents) with a reduced consensus
network system Σ̂ (r agents) based on a predefined clustering of the
graph structure of Σ.

We consider consensus network systems (CNSs) consisting of
time-scaled single integrator agents evolving over a network
described by a undirected, weighted, and connected graph.
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Problem Setup

Consensus Dynamics

Σ :

{
Eẋ(t) = −Lx(t) + Fu(t),
y(t) = Hx(t),

where L = DWDT and D are the Laplacian and incidence matrices of G.

D. Abou Jaoude- American University of Beirut FEANICSES Workshop 2022 26 / 45



Problem Setup

For example, consider the following consensus network Σ:

The configuration is represented by a graph G(V, E ,E ,W ) with

V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
E = diag((1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
E = {16, 25, 26, 34, 35, 36, 45, 56, 57, 58, 67, 68, 78, 79, 710}
W = diag((5, 3, 2, 1, 2, 3, 5, 2, 6, 7, 6, 7, 1, 1, 1))
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Problem Setup

The given graph clustering of G(V, E ,E ,W ) can be characterized by
the following matrix Π ∈ R10×5:

Π =


1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1


T

.

Using Π, a reduced graph Ĝ is obtained as follows:

nodes within the same cluster are aggregated into a single node
edges within the same cluster are removed
if there is at least one edge between any pairs of nodes in different
clusters, then a single edge between the corresponding clusters is
retained. Otherwise, no edge exists between the two clusters.

A reduced, undirected, and connected graph Ĝ(V̂, Ê , Ê , Ŵ ) with
arbitrary edge weights and nodal time-scales is obtained.
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Problem Setup

Thus, the following parameterized reduced consensus network system
Σ̂ is constructed:

The underlying reduced graph is given by Ĝ(V̂, Ê , Ê , Ŵ ) with

V̂ = {1, 2, 3, 4, 5}
Ê = diag((ê1, ê2, ê3, ê4, ê5))
Ê = {12, 23, 24, 34, 35}
Ŵ = diag((ŵ1, ŵ2, ŵ3, ŵ4, ŵ5))
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Problem Setup

Consensus Dynamics

Σ :

{
Eẋ(t) = −DWDT x(t) + Fu(t),
y(t) = Hx(t).

Reduced (Parameterized) Consensus Dynamics

Σ̂(Ê , Ŵ , α, β) :

{
Ê ˙̂x(t) = −D̂Ŵ D̂T x̂(t) + βF̂u(t),

ŷ(t) = αĤx̂(t).

Tune Ê and Ŵ so that ∥Σ− Σ̂∥H∞ or ∥Σ− Σ̂∥H2 is minimized.

F̂ = ΠTF , Ĥ = HΠ, and D̂ = ΠTD (duplicate and zero columns
removed).

α and β are scalars chosen to ensure that any choice for Ê and Ŵ
yields a Bounded-Input Bounded-Output (BIBO) stable error system.
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Problem Setup

The Petrov-Galerkin Projection (PGP) paradigm is often applied in
clustering-based MR techniques after carefully choosing Π.
Here, the reduced edge weights and nodal time-scales are
parameterized and tuned for better results.
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Problem Setup

Problem Statement

Given the consensus network system Σ and the parameterized reduced
consensus network system Σ̂, solve the following optimization problems:

min
Ê∈Dr

++,Ŵ∈D|Ê|
++

∥Σ− Σ̂∥H∞ ,

min
Ê∈Dr

++,Ŵ∈D|Ê|
++

∥Σ− Σ̂∥H2 ,

where Dn
++ is the set of diagonal positive definite matrices of size n × n.

(Cheng et al., 2019) and (Cheng et al., 2020)

min
Ŵ∈D|Ê|

++

∥Σ− Σ̂∥H2 where Ê = ΠTEΠ.
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BIBO Stability of Error System

Realization for the error system Σ− Σ̂:

Σ− Σ̂ :


[
ẋ(t)
˙̂x(t)

]
=

[
−E−1L 0

0 −Ê−1D̂Ŵ D̂T

] [
x(t)
x̂(t)

]
+

[
E−1F

βÊ−1F̂

]
u(t),

e(t) =
[
H −αĤ

] [x(t)
x̂(t)

]
.

Lemma 1

If αβ = tr(Ê)
tr(E) , then Σ− Σ̂ is BIBO stable for all Ê ∈ Dr

++ and Ŵ ∈ D|Ê|
++.
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BIBO Stability of Error System

A few remarks on Lemma 1:

The condition on αβ guarantees the BIBO stability of Σ− Σ̂ by
cancelling the poles at 0 from the transfer function of Σ− Σ̂.

For such parameters α and β, the approximation errors given by
∥Σ− Σ̂∥H∞ and ∥Σ− Σ̂∥H2 are bounded for any Ê and Ŵ .

∥Σ− Σ̂∥H∞ and ∥Σ− Σ̂∥H2 are invariant under the specific choices

of α and β as long as αβ = tr(Ê)
tr(E) .

Adopted convenient choice for α and β

α = 1 and β = tr(Ê)
tr(E) .
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H∞-based Optimization

∥Σ− Σ̂∥H∞ < γ̂ can be characterized by a matrix inequality in Ŵ
and Ê :
min

γ̂,X≻0,Ŵ ,Ê
γ̂

s.t.


ATX + XA XB θCT XJ

∗ −γ̂I 0 0
∗ ∗ −γ̂I 0
∗ ∗ ∗ 0


︸ ︷︷ ︸

ψ∞(γ̂,X )

+


−ÂT Â −ÂT B̂ θĈT ÂT

∗ −B̂T B̂ 0 B̂T

∗ ∗ 0 0
∗ ∗ ∗ −I


︸ ︷︷ ︸

ϕ∞(Ŵ ,Ê)

≺ 0.

Although Ŵ and Ê are neatly decoupled from γ̂ and X and ψ∞(γ̂,X )
is linear in its arguments, ϕ∞(Ŵ , Ê ) is nonlinear in its arguments.

We alternate between optimizing Ŵ for fixed Ê and vice-versa.
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H∞-based Optimization

H∞-based optimization problem for fixed Ê :

min
γ̂,X≻0,Ŵ

γ̂

s.t. ψ∞(γ̂,X )︸ ︷︷ ︸
convex term

+ ϕ∞(Ŵ )︸ ︷︷ ︸
concave term

≺ 0.

Constraint is dealt with by:

Iteratively solving a linearized optimization problem, where the concave
term is linearized around the previous solution Ŵ(k−1).

Linearizing the concave term ϕ∞(Ŵ ), while making the constraint
more restrictive, makes the optimization problem convex.
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Algorithm 1 (A1): H∞-based optimization for fixed time-scales Ê

Input: E , L, F , H, Π, Ê , Ŵ0, γ̂0, ε

Output: Ŵ∗

Initialize: k ← 0, Ŵ(k) ← Ŵ0, and γ̂(k) ← γ̂0

While: γ̂(k) − γ̂(k+1) ≥ ε
Solve:

min
γ̂,X≻0,Ŵ

γ̂

s.t. ψ∞(γ̂,X ) + ϕ∞(Ŵ(k−1)) + Dϕ∞(Ŵ(k−1))[Ŵ − Ŵ(k−1)]︸ ︷︷ ︸
ϕ̃∞(Ŵ )

≺ 0,

where ϕ∞(Ŵ ) ≺ ϕ̃∞(Ŵ ) ≺ 0.

Obtain: Ŵ∗ and γ̂∗

Update: k ← k + 1, Ŵ(k) ← Ŵ∗, and γ̂(k) ← γ̂∗ end
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H∞-based Optimization

H∞-based optimization problem for fixed Ŵ :

min
γ̂,X≻0,Ê

γ̂

s.t. ψ∞(γ̂,X )︸ ︷︷ ︸
convex term

+ ϕ∞(Ê )︸ ︷︷ ︸
not concave

≺ 0.

In this case, ϕ∞(Ê ) is not concave in Ê .

More involved manipulations are required to solve the problem.

The structure of ϕ∞(Ê ) can be leveraged by

Treating Ê−1 as the variable instead of Ê .

Introducing a variable Z such that Z = Ê .
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H∞-based Optimization

H∞-based optimization problem for fixed Ŵ :

min
γ̂,X≻0,Ê−1,Z

γ̂

s.t. ψ∞(γ̂,X )︸ ︷︷ ︸
convex term

+ϕ∞(Ê−1,Z )︸ ︷︷ ︸
concave term

≺ 0,

Z = (Ê−1)−1.

ϕ∞(Ê−1,Z ) is concave in (Ê−1,Z ).

The equality constraint is split into two inequality constraints:

1 (Ê−1)−1 − Z ⪯ 0 ⇐⇒
[
Ê−1 I
I Z

]
⪯ 0, which is an LMI.

2 Z − (Ê−1)−1 ⪯ 0, which is a difference of two convex mappings.
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Algorithm 2 (A2): H∞-based optimization for fixed edge weights Ŵ

Input: E , L, F , H, Π, Ê0, Ŵ , γ̂0, ε

Output: Ê∗

Initialize: k ← 0, (Ê−1
(k) ,Z(k))← (Ê−1

0 , Ê0), and γ̂(k) ← γ̂0

While: γ̂(k) − γ̂(k+1) ≥ ε
Solve:

min
γ̂,X≻0,Ê−1,Z

γ̂

s.t. ψ∞(γ̂,X ) + ϕ̃∞(Ê−1,Z ) ≺ 0,[
Ê−1 I
I Z

]
⪯ 0, Z − f̃ (Ê−1) ⪯ 0,

where f (X ) = X−1.

Obtain: Ê−1
∗ , Z∗, and γ̂∗

Update: k ← k + 1, (Ê−1
(k) ,Z(k))← (Ê−1

∗ , Ê∗), and γ̂(k) ← γ̂∗
end
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H2-based Optimization

A similar characterization for ∥Σ− Σ̂∥H2 is used to formulate
optimization problems for the independent selection of edge weights
and nodal time-scales of Σ̂.

H2-based optimization problem for fixed Ŵ at iteration k :

min
X≻0,Ê−1,Z ,R

tr(R)

s.t. ψ2(X ) + ϕ̃2(Ê
−1,Z ) ≺ 0, Z − f̃ (Ê−1) ⪯ 0,[

X θ̂(C + Ĉ )T

∗ R

]
≻ 0,

[
Ê−1 I
∗ Z

]
⪰ 0.

All proposed algorithms can be initialized by the solution obtained
from applying the Petrov-Galerkin Projection (PGP) paradigm.
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Illustrative Example
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Illustrative Example

Th following four algorithms are applied:

Algorithm (A1) outputs an H∞-suboptimal matrix of weights Ŵ∗ for
a given matrix of time-scales Ê .

Algorithm (A2) outputs an H∞-suboptimal matrix of time-scales Ê∗
for a given matrix of weights Ŵ .

Algorithm (A3)* outputs an H2-suboptimal matrix of weights Ŵ∗ for
a given matrix of time-scales Ê (Cheng et al., 2020).

Algorithm (A4) outputs an H2-suboptimal matrix of time-scales Ê∗
for a given matrix of weights Ŵ .
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Example Results

Table: Normalized reduction errors using proposed algorithms.

MR Method
∥Σ−Σ̂∥H∞
∥Σ∥H∞

MR Method
∥Σ−Σ̂∥H2
∥Σ∥H2

PGP 0.146 PGP 0.392

A1 0.076 A3 0.313

A1 → A2 0.040 A3 → A4 0.049

A2 0.040 A4 0.078

A2 → A1 0.039 A4 → A3 0.076

Algorithm Optimized Parameters

A1 ê∗ =
[
4.0 2.0 1.0 1.0 2.0

]
ŵ∗ =

[
12.5 9.5 0.8 36.4 2.0

]
A1 → A2 ê∗ =

[
3.7 1.5 1.6 1.5 1.9

]
ŵ∗ =

[
12.5 9.5 0.8 36.4 2.0

]
Table: Sample weights and time-scales returned by the proposed algorithms.
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Conclusion

Analyzed the H∞ performance for the weighted and time-scaled edge
consensus protocol by deriving expressions of and bounds on the
H∞-norm.

Derived new insights on minimizing the H∞-norm and proposed a
versatile optimization setup for the selection of these parameters.

Proposed H∞- and H2-based model reduction methods for consensus
network systems, whereby the parameterized edge weights and nodal
time-scales of the reduced consensus network system are tuned via
iterative algorithms.

Improved on existing clustering based approaches by initializing the
iterative algorithms using Petrov-Galerkin Projection output.
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