Analysis, Design, and Model Reduction of Consensus Networked Dynamical Systems

Dany Abou Jaoude

American University of Beirut (AUB) FEANICSES 2022 Workshop

5,6 December 2022

References

- \bullet O. Farhat, D. Abou Jaoude, and M. Hudoba de Badyn, " H_{∞} network optimization for edge consensus," European Journal of Control, Volume 62, 2021, Pages 2–13.
- R. Sabbagh and **D. Abou Jaoude**, "Model reduction of consensus network systems via selection of optimal edge weights and nodal time-scales," 2022 American Control Conference (ACC), 2022, pp. 1859–1866.

Control and Optimization Lab

Introduction

- Dynamical systems operating over networks appear in many natural and engineering systems.
- Example applications include: robotics and autonomous spacecraft, wind farm optimization, and multi-agent systems.

 -10.5

Introduction

A popular model of such dynamic processes is consensus, which is a distributed information-sharing protocol over a network where agents are able to agree on a common value of interest.

 -10.5

• The first part of this talk addresses the problem of designing robust consensus networks that are able to reject the adversarial exogenous noise and disturbance inputs in the sense of the \mathcal{H}_{∞} -norm.

- The first part of this talk addresses the problem of designing robust consensus networks that are able to reject the adversarial exogenous noise and disturbance inputs in the sense of the \mathcal{H}_{∞} -norm.
- The state matrix of the consensus protocol is not Hurwitz, which precludes analysis involving the \mathcal{H}_{∞} -norm.

- The first part of this talk addresses the problem of designing robust consensus networks that are able to reject the adversarial exogenous noise and disturbance inputs in the sense of the \mathcal{H}_{∞} -norm.
- The state matrix of the consensus protocol is not Hurwitz, which precludes analysis involving the \mathcal{H}_{∞} -norm.
	- ▶ For a connected graph, we can rely on the edge consensus model to perform the \mathcal{H}_{∞} analysis.

- The first part of this talk addresses the problem of designing robust consensus networks that are able to reject the adversarial exogenous noise and disturbance inputs in the sense of the \mathcal{H}_{∞} -norm.
- The state matrix of the consensus protocol is not Hurwitz, which precludes analysis involving the \mathcal{H}_{∞} -norm.
	- ▶ For a connected graph, we can rely on the edge consensus model to perform the \mathcal{H}_{∞} analysis.
- We consider a network of single integrator agents operating on independent time scales, connected by weighted edges, and corrupted by exogenous disturbances.

 Ω

イロト イ押 トイヨ トイヨト

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 6 / 45

¹D. Zelazo, M. Mesbahi, Edge agreement: Graph-theoretic Performance Bounds and Passivity Analysis, IEEE Transactions on Automatic Control 56 (3) (2011) 544-555.

 $2D$. R. Foight, M. Hudoba de Badyn, M. Mesbahi, Performance and Design of Consensus on Matrix-Weighted and Time Scaled Graphs, IEEE Transactions on Control of Network Systems 7 (4) (2020) 1812-1822. $A \oplus A \times A \oplus A \times A \oplus A$ QQ

Graph Theory

- **Consider a network of n** single integrator units evolving at differing rates.
- This configuration is represented by an undirected and connected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W, E)$, where
	- \bullet V : set of nodes.
	- E : set of edges,
	- \bullet W: diagonal matrix of (positive) edge weights,
	- \bullet E: diagonal matrix of (positive) node time scales.

$$
\mathcal{V} = \{1, 2, 3, 4\}, \ \mathcal{E} = \{12, 23, 34, 41, 13\},
$$
\n
$$
W = \begin{bmatrix} w_1 & 0 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 & 0 \\ 0 & 0 & w_3 & 0 & 0 \\ 0 & 0 & 0 & w_4 & 0 \\ 0 & 0 & 0 & 0 & w_5 \end{bmatrix},
$$
\n
$$
E = \begin{bmatrix} \epsilon_1 & 0 & 0 & 0 \\ 0 & \epsilon_2 & 0 & 0 \\ 0 & 0 & \epsilon_3 & 0 \\ 0 & 0 & 0 & \epsilon_4 \\ 0 & 0 & 0 & \epsilon_5 \end{bmatrix}.
$$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 7 / 45

Graph Theory

- For the graph \mathcal{G} :
- **1** The incidence matrix, which characterizes the incidence relation between distinct pairs of nodes, is

$$
D(\mathcal{G}) = \left[\begin{array}{cccccc} 1 & 0 & 0 & -1 & 1 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \end{array} \right]
$$

• We also define the matrix
$$
R(G) = [I \quad T_{\tau}^c]
$$
, with

$$
T_{\tau}^c = (D_{\tau}^T D_{\tau})^{-1} D_{\tau}^T D_c,
$$

where

- \bullet D_{τ} : incidence matrix of chosen spanning tree subgraph,
- \bullet D_c : incidence matrix of corresponding co-t[ree](#page-9-0).

Figure: Red edges are the chosen spanning tree edges. Black edges are the corresponding co-tree edges.

.

• For a given spanning tree \mathcal{G}_{τ} , the edge consensus model Σ_{τ} corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020) $\int \dot{x}_{\tau}(t) = -\mathcal{L}_{e,s}^{\tau} RWR^{\mathsf{T}}x_{\tau}(t) + D_{\tau}^{\mathsf{T}} E^{-1} \Omega \hat{w}(t) - \mathcal{L}_{e,s}^{\tau} R \Gamma \hat{v}(t),$ $z(t) = R^T x_\tau(t),$

• For a given spanning tree G_{τ} , the edge consensus model Σ_{τ} corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020)
\n
$$
\begin{cases}\n\dot{x}_{\tau}(t) = -L_{e,s}^{\tau} RWR^{\tau}x_{\tau}(t) + D_{\tau}^{\tau} E^{-1} \Omega \hat{w}(t) - L_{e,s}^{\tau} R\Gamma \hat{v}(t), \\
z(t) = R^{\tau}x_{\tau}(t),\n\end{cases}
$$

where

 $\mathsf{x}_{\tau}(t) \in \mathbb{R}^{n-1}$: vector of edge states associated with the spanning tree edges,

• For a given spanning tree \mathcal{G}_{τ} , the edge consensus model Σ_{τ} corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020)
\n
$$
\begin{cases}\n\dot{x}_{\tau}(t) = -L_{e,s}^{\tau} RWR^{\tau}x_{\tau}(t) + D_{\tau}^{\tau} E^{-1} \Omega \hat{w}(t) - L_{e,s}^{\tau} R\Gamma \hat{v}(t), \\
z(t) = R^{\tau}x_{\tau}(t),\n\end{cases}
$$

where

- $\mathsf{x}_{\tau}(t) \in \mathbb{R}^{n-1}$: vector of edge states associated with the spanning tree edges,
- ${\mathcal L}_{\mathsf{e},\mathsf{s}}^\tau = D_\tau^{\mathcal T} E^{-1} D_\tau$: edge Laplacian for a spanning tree ${\mathcal G}_\tau$,

 OQ

K ロ > K 個 > K 경 > K 경 > X 경

• For a given spanning tree \mathcal{G}_{τ} , the edge consensus model Σ_{τ} corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020)
\n
$$
\begin{cases}\n\dot{x}_{\tau}(t) = -L_{e,s}^{\tau} RWR^{\tau}x_{\tau}(t) + D_{\tau}^{\tau} E^{-1} \Omega \hat{w}(t) - L_{e,s}^{\tau} R\Gamma \hat{v}(t), \\
z(t) = R^{\tau}x_{\tau}(t),\n\end{cases}
$$

where

- $\mathsf{x}_{\tau}(t) \in \mathbb{R}^{n-1}$: vector of edge states associated with the spanning tree edges,
- ${\mathcal L}_{\mathsf{e},\mathsf{s}}^\tau = D_\tau^{\mathcal T} E^{-1} D_\tau$: edge Laplacian for a spanning tree ${\mathcal G}_\tau$,
- $\hat{w}(t)$: normalized Gaussian process noise signal, associated with the nodes, with covariance matrix $Ω$,

• For a given spanning tree \mathcal{G}_{τ} , the edge consensus model Σ_{τ} corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020) $\int \dot{x}_{\tau}(t) = -\mathcal{L}_{e,s}^{\tau} RWR^{\mathsf{T}}x_{\tau}(t) + D_{\tau}^{\mathsf{T}} E^{-1} \Omega \hat{w}(t) - \mathcal{L}_{e,s}^{\tau} R \Gamma \hat{v}(t),$ $z(t) = R^T x_\tau(t),$

where

- $\mathsf{x}_{\tau}(t) \in \mathbb{R}^{n-1}$: vector of edge states associated with the spanning tree edges,
- ${\mathcal L}_{\mathsf{e},\mathsf{s}}^\tau = D_\tau^{\mathcal T} E^{-1} D_\tau$: edge Laplacian for a spanning tree ${\mathcal G}_\tau$,
- $\hat{w}(t)$: normalized Gaussian process noise signal, associated with the nodes, with covariance matrix $Ω$,
- $\hat{v}(t)$: normalized Gaussian measurement noise signal, associated with the edges, with covariance matrix Γ,

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

• For a given spanning tree \mathcal{G}_{τ} , the edge consensus model Σ_{τ} corresponding to the spanning tree edge states is given by

Edge Agreement Protocol (Foight et al., 2020) $\int \dot{x}_{\tau}(t) = -\mathcal{L}_{e,s}^{\tau} RWR^{\mathsf{T}}x_{\tau}(t) + D_{\tau}^{\mathsf{T}} E^{-1} \Omega \hat{w}(t) - \mathcal{L}_{e,s}^{\tau} R \Gamma \hat{v}(t),$ $z(t) = R^T x_\tau(t),$

where

- $\mathsf{x}_{\tau}(t) \in \mathbb{R}^{n-1}$: vector of edge states associated with the spanning tree edges,
- ${\mathcal L}_{\mathsf{e},\mathsf{s}}^\tau = D_\tau^{\mathcal T} E^{-1} D_\tau$: edge Laplacian for a spanning tree ${\mathcal G}_\tau$,
- $\hat{w}(t)$: normalized Gaussian process noise signal, associated with the nodes, with covariance matrix $Ω$,
- $\hat{v}(t)$: normalized Gaussian measurement noise signal, associated with the edges, with covariance matrix Γ,
- \bullet z(t): monitored performance signal.

 OQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

Edge Agreement Protocol Σ_{τ}

$$
\begin{cases}\n\dot{x}_{\tau}(t) = \underbrace{-L_{e,s}^{\tau}RWR^{\tau}}_{A}x_{\tau}(t) + \underbrace{\left[D_{\tau}^{\tau}E^{-1}\Omega_{\cdot} - L_{e,s}^{\tau}R\Gamma\right]}_{B}\left[\begin{array}{c}\hat{w}(t)\\ \hat{v}(t)\end{array}\right], \\
z(t) = \underbrace{R_{\cdot}^{\tau}}_{C}x_{\tau}(t).\n\end{cases}
$$

Then,
$$
\Sigma_{\tau}(s) = R^{T}(sI + L_{e,s}^{\tau}RWR^{T})^{-1} [D_{\tau}^{T}E^{-1}\Omega - L_{e,s}^{\tau}R\Gamma].
$$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 10 / 45

 2990

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Edge Agreement Protocol Σ_{τ}

$$
\begin{cases}\n\dot{x}_{\tau}(t) = \underbrace{-L_{e,s}^{\tau}RWR^{\tau}}_{A}x_{\tau}(t) + \underbrace{\left[D_{\tau}^{\tau}E^{-1}\Omega_{\tau} - L_{e,s}^{\tau}R\Gamma\right]}_{B}\left[\begin{array}{c}\hat{w}(t)\\ \hat{v}(t)\end{array}\right], \\
z(t) = \underbrace{R^{\tau}}_{C}x_{\tau}(t).\n\end{cases}
$$

Then,
$$
\Sigma_{\tau}(s) = R^{T}(sI + L_{e,s}^{\tau}RWR^{T})^{-1} [D_{\tau}^{T}E^{-1}\Omega - L_{e,s}^{\tau}R\Gamma].
$$

• The \mathcal{H}_{∞} -norm of a stable LTI system with a transfer function $\Phi(s)$ is defined as

$$
\|\Phi\|_{\infty}=\sup_{\omega\in\mathbb{R}}\{\bar{\sigma}(\Phi(j\omega))\}.
$$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 10 / 45

4 0 3

 \rightarrow \equiv \rightarrow

Edge Agreement Protocol Σ_{τ}

$$
\begin{cases}\n\dot{x}_{\tau}(t) = \underbrace{-L_{e,s}^{\tau}RWR^{\tau}}_{A}x_{\tau}(t) + \underbrace{\left[D_{\tau}^{\tau}E^{-1}\Omega_{} - L_{e,s}^{\tau}R\Gamma\right]}_{B}\left[\begin{array}{c}\hat{w}(t)\\ \hat{v}(t)\end{array}\right], \\
z(t) = \underbrace{R^{\tau}}_{C}x_{\tau}(t).\n\end{cases}
$$

Then,
$$
\Sigma_{\tau}(s) = R^{T}(sI + L_{e,s}^{\tau}RWR^{T})^{-1} [D_{\tau}^{T}E^{-1}\Omega - L_{e,s}^{\tau}R\Gamma].
$$

• The \mathcal{H}_{∞} -norm of a stable LTI system with a transfer function $\Phi(s)$ is defined as

$$
\|\Phi\|_{\infty}=\sup_{\omega\in\mathbb{R}}\{\bar{\sigma}(\Phi(j\omega))\}.
$$

Lemma (Zelazo & Mesbahi, 2011)

The \mathcal{H}_{∞} -norm of the system Σ_{τ} satisfies $\|\Sigma_{\tau}\|_{\infty}=\bar{\sigma}\big(\Sigma_{\tau}(0)\big).$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 10 / 45

Lemma

The \mathcal{H}_{∞} -norm of the system Σ_{τ} satisfies

$$
\begin{aligned}\n\|\Sigma_{\tau}\|_{\infty}^2 &\geq \left(\lambda_{\min}(Q)\lambda_{\min}(B_{\tau}^{\top}B_{\tau}) + \lambda_{\min}(F)\lambda_{\min}(B_{c}^{\top}B_{c})\right)\lambda_{\max}(J), \\
\|\Sigma_{\tau}\|_{\infty}^2 &\leq \left(\lambda_{\max}(Q)\lambda_{\max}(B_{\tau}^{\top}B_{\tau}) + \lambda_{\max}(F)\lambda_{\max}(B_{c}^{\top}B_{c})\right)\lambda_{\max}(J),\n\end{aligned}
$$

where $B_\tau=E^{-1}D_\tau,$ $B_{\mathsf{c}}=R^\mathsf{T} L_{e,s}^\tau,$ $Q=\Omega\Omega^\mathsf{T}$, $\mathsf{F}=\mathsf{T}\mathsf{\Gamma}^\mathsf{T}$, and $J = A^{-T} C^{T} C A^{-1}.$

4日下

Lemma

The \mathcal{H}_{∞} -norm of the system Σ_{τ} satisfies

$$
\|\Sigma_{\tau}\|_{\infty}^{2} \geq \left(\frac{\lambda_{\min}(Q)}{\lambda_{\min}(B_{\tau}^{T}B_{\tau})} + \frac{\lambda_{\min}(F)}{\lambda_{\min}(B_{c}^{T}B_{c})}\right)\lambda_{\max}(J),
$$

$$
\|\Sigma_{\tau}\|_{\infty}^{2} \leq \left(\frac{\lambda_{\max}(Q)}{\lambda_{\max}(B_{\tau}^{T}B_{\tau})} + \frac{\lambda_{\max}(F)}{\lambda_{\max}(B_{c}^{T}B_{c})}\right)\lambda_{\max}(J),
$$

where $B_{\tau} = E^{-1}D_{\tau}$, $B_{c} = R^{T}L_{e,s}^{\tau}$, $Q = \Omega\Omega^{T}$, $F = \Gamma\Gamma^{T}$, and
 $J = A^{-T}C^{T}CA^{-1}$.

• Hence, the \mathcal{H}_{∞} performance of two systems having pairs of covariance matrices that share the same maximum and minimum eigenvalues will be governed by the same bounds.

Lemma

The \mathcal{H}_{∞} -norm of the system Σ_{τ} satisfies

$$
\|\Sigma_{\tau}\|_{\infty}^{2} \geq \left(\frac{\lambda_{\min}(Q)}{\lambda_{\min}(B_{\tau}^{T}B_{\tau})} + \frac{\lambda_{\min}(F)}{\lambda_{\min}(B_{c}^{T}B_{c})}\right)\lambda_{\max}(J),
$$

$$
\|\Sigma_{\tau}\|_{\infty}^{2} \leq \left(\frac{\lambda_{\max}(Q)}{\lambda_{\max}(B_{\tau}^{T}B_{\tau})} + \frac{\lambda_{\max}(F)}{\lambda_{\max}(B_{c}^{T}B_{c})}\right)\lambda_{\max}(J),
$$

where $B_{\tau} = E^{-1}D_{\tau}$, $B_{c} = R^{T}L_{e,s}^{\tau}$, $Q = \Omega\Omega^{T}$, $F = \Gamma\Gamma^{T}$, and
 $J = A^{-T}C^{T}CA^{-1}$.

- Hence, the \mathcal{H}_{∞} performance of two systems having pairs of covariance matrices that share the same maximum and minimum eigenvalues will be governed by the same bounds.
- The remainder of the results focus on the special choice of covariance matrices $\Omega=\sigma_w E^{\frac{1}{2}}$ and $\Gamma=\sigma_v W^{\frac{1}{2}}$, and the resulting system will be denoted by $\tilde{\Sigma}_\tau.$ QQ

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2=\bar{\sigma}(Z),
$$

where

$$
Z = \sigma_w^2 R^T (RWR^T L_{e,s}^T RWR^T)^{-1}R + \sigma_v^2 R^T (RWR^T)^{-1}R,
$$

$$
L_{e,s}^T = D_{\tau}^T E^{-1} D_{\tau}.
$$

 2990

イロト イ部 トイモ トイモト

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2=\bar{\sigma}(Z),
$$

where

$$
Z = \sigma_w^2 R^T (RWR^T L_{e,s}^T RWR^T)^{-1}R + \sigma_v^2 R^T (RWR^T)^{-1}R,
$$

$$
L_{e,s}^T = D_{\tau}^T E^{-1} D_{\tau}.
$$

• For $W = I$ and $E = I$ (Zelazo & Mesbahi, 2011):

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2 = \bar{\sigma} \big(\sigma_w^2 R^{\mathsf{T}} (R R^{\mathsf{T}} D_{\tau}^{\mathsf{T}} D_{\tau} R R^{\mathsf{T}})^{-1} R + \sigma_v^2 R^{\mathsf{T}} (R R^{\mathsf{T}})^{-1} R \big)
$$

4日下

 QQ

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2=\bar{\sigma}(Z),
$$

where

L

$$
Z = \sigma_w^2 R^T (RWR^T \underline{L_{e,s}^{\tau}} RWR^T)^{-1}R + \sigma_v^2 R^T (RWR^T)^{-1}R,
$$

$$
L_{e,s}^T = \underline{D_{\tau}^T E^{-1} D_{\tau}}.
$$

• For $W = I$ and $E = I$ (Zelazo & Mesbahi, 2011):

 $\|\tilde{\Sigma}_{\tau}\|_{\infty}^2 = \bar{\sigma} \big(\sigma_w^2 R^{\mathsf{T}} (R R^{\mathsf{T}} D_{\tau}^{\mathsf{T}} D_{\tau} R R^{\mathsf{T}})^{-1} R + \sigma_v^2 R^{\mathsf{T}} (R R^{\mathsf{T}})^{-1} R \big)$

4.000.00

 $A \oplus B$ $A \oplus B$ $A \oplus B$

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2=\bar{\sigma}(Z),
$$

where

$$
Z = \sigma_w^2 R^{\mathcal{T}} \left(\frac{RWR^{\mathcal{T}}}{2\epsilon_{\mathsf{S}}S} \frac{L_{\epsilon,\mathsf{S}}^{\mathsf{T}} RWR^{\mathcal{T}}}{R^{\mathsf{T}}}\right)^{-1} R + \sigma_v^2 R^{\mathsf{T}} \left(\frac{RWR^{\mathcal{T}}}{RWR^{\mathcal{T}}}\right)^{-1} R,
$$

$$
L_{\epsilon,\mathsf{S}}^{\mathsf{T}} = D_{\tau}^{\mathsf{T}} E^{-1} D_{\tau}.
$$

• For $W = I$ and $E = I$ (Zelazo & Mesbahi, 2011):

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2 = \bar{\sigma} \big(\sigma_w^2 R^{\mathsf{T}} \big(\frac{R R^{\mathsf{T}}}{R R^{\mathsf{T}}} D_{\tau}^{\mathsf{T}} D_{\tau} \frac{R R^{\mathsf{T}}}{R R^{\mathsf{T}}} \big)^{-1} R + \sigma_v^2 R^{\mathsf{T}} \big(\frac{R R^{\mathsf{T}}}{R R^{\mathsf{T}}} \big)^{-1} R \big).
$$

4日下

- 4 重 8 - 4 重 8

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}^2=\bar{\sigma}(Z),
$$

where

$$
Z = \sigma_w^2 R^T (RWR^T L_{e,s}^{\tau} RWR^T)^{-1} R + \sigma_v^2 R^T (RWR^T)^{-1} R,
$$

$$
L_{e,s}^{\tau} = D_{\tau}^T E^{-1} D_{\tau}.
$$

• For $W = I$ and $E = I$ (Zelazo & Mesbahi, 2011):

$$
\begin{split} \|\tilde{\Sigma}_{\tau}\|_{\infty}^{2} &= \bar{\sigma} \big(\sigma_{w}^{2} R^{T} (R R^{T} D_{\tau}^{T} D_{\tau} R R^{T})^{-1} R + \sigma_{v}^{2} \frac{R^{T} (R R^{T})^{-1} R}{R} \big) \\ &= \sigma_{w}^{2} \bar{\sigma} \big(R^{T} (R R^{T} L_{e}^{T} R R^{T})^{-1} R \big) + \sigma_{v}^{2} .\end{split}
$$

4日下

- 4 重 8 - 4 重 8

• Consider a modified system Π_{τ} defined by

$$
\Pi_{\tau}(s) = W^{\frac{1}{2}}\tilde{\Sigma}_{\tau}(s).
$$

Theorem

The \mathcal{H}_{∞} -norm of the system Π_{τ} satisfies

$$
\|\Pi_{\tau}\|_{\infty}^2 = \sigma_w^2 \bar{\sigma}(X) + \sigma_v^2,
$$

where

$$
X = W^{\frac{1}{2}}R^{T}(RWR^{T}L_{e,s}^{\tau}RWR^{T})^{-1}RW^{\frac{1}{2}}.
$$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 13 / 45

4 0 8

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

The expression of $\|\Pi_\tau\|_\infty^2$ can be used to calculate new upper and lower bounds on the \mathcal{H}_{∞} -norm of the original system $\tilde{\Sigma}_{\tau}.$

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\frac{\|\Pi_{\tau}\|_{\infty}}{\lambda_{\max}(W^{\frac{1}{2}})} \leq \|\tilde{\Sigma}_{\tau}\|_{\infty} \leq \frac{\|\Pi_{\tau}\|_{\infty}}{\lambda_{\min}(W^{\frac{1}{2}})}.
$$

The expression of $\|\Pi_\tau\|_\infty^2$ can be used to calculate new upper and lower bounds on the \mathcal{H}_{∞} -norm of the original system $\tilde{\Sigma}_{\tau}.$

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\frac{\|\Pi_\tau\|_\infty}{\lambda_{\max}(W^{\frac{1}{2}})} \leq \|\tilde{\Sigma}_\tau\|_\infty \leq \frac{\|\Pi_\tau\|_\infty}{\lambda_{\min}(W^{\frac{1}{2}})}.
$$

The upper bound to lower bound ratio η on $\| \tilde{\Sigma}_{\tau} \|_{\infty}$ is

$$
\eta = \frac{\lambda_{\max}(W^{\frac{1}{2}})}{\lambda_{\min}(W^{\frac{1}{2}})}.
$$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 14 / 45

The expression of $\|\Pi_\tau\|_\infty^2$ can be used to calculate new upper and lower bounds on the \mathcal{H}_{∞} -norm of the original system $\tilde{\Sigma}_{\tau}.$

Theorem

The \mathcal{H}_{∞} -norm of the system $\tilde{\Sigma}_{\tau}$ satisfies

$$
\frac{\|\Pi_{\tau}\|_{\infty}}{\lambda_{\max}(W^{\frac{1}{2}})} \leq \|\tilde{\Sigma}_{\tau}\|_{\infty} \leq \frac{\|\Pi_{\tau}\|_{\infty}}{\lambda_{\min}(W^{\frac{1}{2}})}.
$$

The upper bound to lower bound ratio η on $\| \tilde{\Sigma}_{\tau} \|_{\infty}$ is

$$
\eta = \frac{\lambda_{\max}(W^{\frac{1}{2}})}{\lambda_{\min}(W^{\frac{1}{2}})}.
$$

If $W = I$ (unweighted graph):

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty}=\|\Pi_{\tau}\|_{\infty},
$$

and the obtained bounds are equal.

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 14 / 45

Numerical Example

- \bullet To illustrate the obtained bounds, we consider the graph \mathcal{G} .
- The \mathcal{H}_{∞} -norm of the corresponding system $\tilde{\Sigma}_{\tau}$ and the obtained bounds are computed for different combinations of edge weights and time scales.

Figure: Black edges correspond to the chosen spanning tree edges. Blue edges correspond to the corresponding co-tree edges.

 $-10⁻¹$

Numerical Example

- \bullet To illustrate the obtained bounds, we consider the graph G.
- The \mathcal{H}_{∞} -norm of the corresponding system $\tilde{\Sigma}_{\tau}$ and the obtained bounds are computed for different combinations of edge weights and time scales.

• We derive new insights on the \mathcal{H}_{∞} -norm minimization problem.

Proposition

Consider the homogeneous bounds

$$
w_{\min} I \preceq W \preceq w_{\max} I, \epsilon_{\min} I \preceq E \preceq \epsilon_{\max} I.
$$

Then, $E = \epsilon_{\min}I$ and $W = w_{\max}I$ minimize $\|\Pi_{\tau}(E, W)\|_{\infty}$. Hence,

$$
\|\tilde{\Sigma}_{\tau}\|_{\infty} = \frac{\|\Pi_{\tau}\|_{\infty}}{\sqrt{w_{\max}}}
$$

is also minimized.

 $\left\{ \left. \left(\left. \left| \Phi \right| \right. \right) \left. \left. \left(\left. \left| \Phi \right| \right. \right) \right| \right. \left. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right. \left. \left(\left. \left| \Phi \right| \right) \right| \right)$

 ORO

We propose the following optimization paradigm if diversity of time scales and edge weights is desirable in the particular application of interest.

$$
\min ||\Pi_{\tau}||_{\infty}^2 = \sigma_w^2 \bar{\sigma}(X) + \sigma_v^2 \Leftrightarrow \min \lambda_{\max}(X) \Leftrightarrow \frac{\min}{s.t} \quad X \preceq \zeta I
$$

where $X = W^{\frac{1}{2}}R^{\mathcal{T}}(RWR^{\mathcal{T}}L_{e,s}^{\tau}RWR^{\mathcal{T}})^{-1}RW^{\frac{1}{2}}$.

 OQ

We propose the following optimization paradigm if diversity of time scales and edge weights is desirable in the particular application of interest.

$$
\min ||\Pi_{\tau}||_{\infty}^{2} = \sigma_{w}^{2} \bar{\sigma}(X) + \sigma_{v}^{2} \Leftrightarrow \min \lambda_{\max}(X) \Leftrightarrow \inf_{S.t} \quad X \preceq \zeta I
$$

where $X = W^{\frac{1}{2}} R^{T} (RWR^{T}L_{e,s}^{\tau}RWR^{T})^{-1}RW^{\frac{1}{2}}.$

To formulate our problem as a convex optimization problem, we minimize $\lambda_{\text{max}}(X_1)$ instead, where

$$
X_1 = W^{-\frac{1}{2}} R^{\dagger} (L_{e,s}^{\tau})^{-1} (R^{\dagger})^{\mathsf{T}} W^{-\frac{1}{2}},
$$

and

$$
\lambda_{\max}(X_1) \geq \lambda_{\max}(X).
$$

 η an

KONKAPRA BRADE

• Minimization Problem:

$$
\min_{\zeta, w_l^{-\frac{1}{2}}, \epsilon_l^{-1}} \zeta
$$
\n
$$
\bullet \ X_1 \preceq \zeta I \Leftrightarrow \begin{bmatrix} \zeta I & W^{-\frac{1}{2}} R^{\dagger} \\ (W^{-\frac{1}{2}} R^{\dagger})^T & L_{\epsilon,s}^{\tau} \end{bmatrix} \succeq 0,
$$
\n
$$
\text{where } L_{\epsilon,s}^{\tau} = D_{\tau}^{\tau} E^{-1} D_{\tau}.
$$

 \blacktriangleright ϵ_i : time scale associated with node *i*, $\epsilon^{-1}=(\epsilon_1^{-1},\ldots,\epsilon_n^{-1})$ and $E^{-1}=\mathop{\bf diag}(\epsilon^{-1}),$

$$
w_1
$$
: edge weight associated with edge *I*,

$$
w^{-\frac{1}{2}} = (w_1^{-\frac{1}{2}}, \dots, w_{|\mathcal{E}|}^{-\frac{1}{2}})
$$
 and $W^{-\frac{1}{2}} = \text{diag}(w^{-\frac{1}{2}})$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

• Minimization Problem:

$$
\min_{\zeta, w_l^{-\frac{1}{2}}, \epsilon_l^{-1}} \zeta
$$
\n
$$
\bullet \ X_1 \preceq \zeta \neq \left[\frac{\zeta}{\left(W^{-\frac{1}{2}} R^{\dagger}\right)^{\tau}} \frac{W^{-\frac{1}{2}} R^{\dagger}}{\left(\frac{W^{-\frac{1}{2}}}{W^{-\frac{1}{2}} R^{\dagger}}\right)^{\tau}} \right] \succeq 0,
$$
\n
$$
\text{where } L_{\epsilon, s}^{\tau} = D_{\tau}^{\tau} \ \textbf{E}^{-1} D_{\tau}.
$$

 \blacktriangleright ϵ_i : time scale associated with node *i*, $\epsilon^{-1}=(\epsilon_1^{-1},\ldots,\epsilon_n^{-1})$ and $E^{-1}=\mathop{\bf diag}(\epsilon^{-1}),$

$$
w_1: \text{ edge weight associated with edge } l,
$$

$$
w^{-\frac{1}{2}} = (w_1^{-\frac{1}{2}}, \dots, w_{|\mathcal{E}|}^{-\frac{1}{2}}) \text{ and } W^{-\frac{1}{2}} = \text{diag}(w^{-\frac{1}{2}}).
$$

 η an

 $\textbf{\textbackslash}$ To penalize small node time scales, a regularization term $\|\epsilon^{-1}\|_2$ is added to the objective function.

 OQ

4 ロ ト イ何 ト イヨ ト イヨ ト

- $\textbf{\textbackslash}$ To penalize small node time scales, a regularization term $\|\epsilon^{-1}\|_2$ is added to the objective function.
- \bullet To penalize large edge weights, a new variable $\xi \in \mathbb{R}^{|\mathcal{E}|}$ is introduced such that $w^{\frac{1}{2}}_l \leq \xi_l \Leftrightarrow W^{\frac{1}{2}} \preceq \Xi$, with $\Xi = \mathsf{diag}(\xi).$ Thus, a regularization term $\|\xi\|_2$ is added to the objective function and the LMI

$$
\left[\begin{array}{cc} \equiv & I \\ I & W^{-\frac{1}{2}} \end{array}\right] \succeq 0
$$

is added to the set of constraints.

 OQ

メタトメミトメミト ミ

- $\textbf{\textbackslash}$ To penalize small node time scales, a regularization term $\|\epsilon^{-1}\|_2$ is added to the objective function.
- \bullet To penalize large edge weights, a new variable $\xi \in \mathbb{R}^{|\mathcal{E}|}$ is introduced such that $w^{\frac{1}{2}}_l \leq \xi_l \Leftrightarrow W^{\frac{1}{2}} \preceq \Xi$, with $\Xi = \mathsf{diag}(\xi).$ Thus, a regularization term $\|\xi\|_2$ is added to the objective function and the LMI

$$
\left[\begin{array}{cc} \equiv & I \\ I & W^{-\frac{1}{2}} \end{array}\right] \succeq 0
$$

is added to the set of constraints.

 \bullet To tighten the bounds on the \mathcal{H}_{∞} -norm of $\tilde{\Sigma}_{\tau}$, an upper bound γ is imposed on the ratio η , which can be done through adding the convex constraint

$$
\lambda_{\max}(W^{-\frac{1}{2}})-\gamma\lambda_{\min}(W^{-\frac{1}{2}})\leq 0.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - Y Q Q Q

• We perform \mathcal{H}_{∞} -norm minimization by solving the following semidefinite program:

> minimize $\zeta, w_{i}^{-\frac{1}{2}}, \epsilon_{i}^{-1}, \xi$ $\zeta + \alpha \|\xi\|_2 + \beta \|\epsilon^{-1}\|_2$ subject to $\int \frac{\zeta I}{\zeta D^{\frac{1}{2}} M^{\frac{1}{2}}} \frac{W^{-\frac{1}{2}} R^{\dagger}}{\zeta T}$ $(R^\dagger)^{\mathcal{T}} W^{-\frac{1}{2}} \hspace{10pt} L^\tau_{e,s}$ 1 $\succeq 0,$ $w_{\max,l}^{-\frac{1}{2}} \leq w_l^{-\frac{1}{2}} \leq w_{\min,l}^{-\frac{1}{2}}, \quad \epsilon_{\max,l}^{-1} \leq \epsilon_l^{-1} \leq \epsilon_{\min}^{-1}$ $_{\min,i}^{-1},$ $\lceil \equiv$ $\sqrt{2}$ $I \ W^{-\frac{1}{2}}$ 1 $\succeq 0,$ $\lambda_{\max}(\bar{W^{-\frac{1}{2}}}) - \gamma \lambda_{\min}(\bar{W^{-\frac{1}{2}}}) \leq 0,$

for all $i \in V$ and $l \in \mathcal{E}$, where $\alpha > 0$ and $\beta > 0$ are weights on the different components of the objective function.

 Ω

(ロ) (御) (唐) (唐) (唐)

Formation Control Example

- Consider a network of non-homogenous agents of ground and aerial vehicles operating on multiple time scales.
- Faster agents (aerial vehicles) are in green squares.
- Slower agents (ground vehicles) are in blue ellipses.

Formation Control Example

- The agents are each assigned a position.
	- ▶ Slow agents: '∗' markers on the border of the inner square.
	- ▶ Fast agents: '◦' markers on the border of the outer square.
- The agents run a one-dimensional consensus protocol in two directions $\{z, y\}$.
- $t \in [2, 3]$ is a finite support of randomly generated disturbance signals on the nodes and edges.

Formation Control Example

- ▶ NUD: Unity edge weights and time scales
- ▶ BUD: Optimal edge weights and time scales

Disturbance

Figure: Edge states in the y directio[n o](#page-44-0)[ve](#page-46-0)[r](#page-44-0) [ti](#page-45-0)[m](#page-46-0)[e.](#page-0-0) ÷. 299 Þ

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 23 / 45

Model Reduction of Consensus Network Systems

- As network systems increase in size and complexity, it becomes desirable to find lower order approximant network models.
- This part proposes \mathcal{H}_{∞} and \mathcal{H}_{2} -based model reduction (MR) methods for approximating the input-output behavior of a given consensus network system Σ (*n* agents) with a reduced consensus network system $\hat{\Sigma}$ (r agents) based on a *predefined* clustering of the graph structure of Σ .
- We consider consensus network systems (CNSs) consisting of time-scaled single integrator agents evolving over a network described by a undirected, weighted, and connected graph.

 QQ

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

Prior Work and Paper Contributions

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 25 / 45

 $1X$. Cheng, L. Yu, and J. Scherpen, "Reduced order modeling of linear consensus networks using weight assignments," in 18th European Control Conference (ECC), 2019, pp. 2005–2010.

 $2X$. Cheng, L. Yu, D. Ren, and J. Scherpen, "Reduced order modeling of diffusively coupled network systems: An optimal edge weighting approach," arXiv [pr](#page-46-0)e[pri](#page-48-0)[nt](#page-46-0) π a[r](#page-48-0)[Xiv:](#page-0-0)[20](#page-67-0)[03.](#page-0-0)[035](#page-67-0)[59](#page-0-0) \equiv 2020. \sim

Consensus Dynamics

$$
\Sigma: \left\{\begin{array}{c}\nE\dot{x}(t) = -Lx(t) + Fu(t),\\ \ny(t) = Hx(t),\n\end{array}\right.
$$

where $L = DWD^{T}$ and D are the Laplacian and incidence matrices of G.

4 17 18

- → 三 →

• For example, consider the following consensus network Σ :

• The configuration is represented by a graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, E, W)$ with

$$
\bullet\ \mathcal{V}=\{1,2,3,4,5,6,7,8,9,10\}
$$

•
$$
E = diag((1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
$$

- $\epsilon \mathcal{E} = \{16, 25, 26, 34, 35, 36, 45, 56, 57, 58, 67, 68, 78, 79, 710\}$
- $W = diag((5, 3, 2, 1, 2, 3, 5, 2, 6, 7, 6, 7, 1, 1, 1))$

• The given graph clustering of $\mathcal{G}(\mathcal{V}, \mathcal{E}, E, W)$ can be characterized by the following matrix $\Pi \in \mathbb{R}^{10 \times 5}$:

$$
\Pi = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}^T
$$

• Using Π , a reduced graph \hat{G} is obtained as follows:

- nodes within the same cluster are aggregated into a single node
- edges within the same cluster are removed
- if there is at least one edge between any pairs of nodes in different clusters, then a single edge between the corresponding clusters is retained. Otherwise, no edge exists between the two clusters.
- A reduced, undirected, and connected graph $\hat{\mathcal{G}}(\hat{\mathcal{V}}, \hat{\mathcal{E}}, \hat{\mathcal{E}}, \hat{W})$ with arbitrary edge weights and nodal time-scale[s i](#page-49-0)s [o](#page-51-0)[b](#page-49-0)[ta](#page-50-0)[in](#page-51-0)[ed](#page-0-0)[.](#page-67-0)

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 28 / 45

 Ω

.

• Thus, the following parameterized reduced consensus network system $\hat{\Sigma}$ is constructed:

• The underlying reduced graph is given by $\hat{\mathcal{G}}(\hat{V}, \hat{\mathcal{E}}, \hat{F}, \hat{W})$ with

\n- \n
$$
\hat{\mathcal{V}} = \{1, 2, 3, 4, 5\}
$$
\n
\n- \n $\hat{\mathcal{E}} = \text{diag}((\hat{e}_1, \hat{e}_2, \hat{e}_3, \hat{e}_4, \hat{e}_5))$ \n
\n- \n $\hat{\mathcal{E}} = \{12, 23, 24, 34, 35\}$ \n
\n- \n $\hat{\mathcal{W}} = \text{diag}((\hat{w}_1, \hat{w}_2, \hat{w}_3, \hat{w}_4, \hat{w}_5))$ \n
\n

 \blacksquare

Consensus Dynamics

$$
\Sigma: \left\{ \begin{array}{l} Ex(t) = -DWD^T x(t) + Fu(t), \\ y(t) = Hx(t). \end{array} \right.
$$

Reduced (Parameterized) Consensus Dynamics

$$
\mathbf{\hat{\Sigma}}(\hat{E}, \hat{W}, \alpha, \beta) : \left\{ \begin{array}{l} \hat{E} \dot{\hat{\mathsf{x}}}(t) = - \hat{D} \hat{W} \hat{D}^{\mathsf{T}} \hat{\mathsf{x}}(t) + \beta \hat{F} u(t), \\ \hat{\mathsf{y}}(t) = \alpha \hat{H} \hat{\mathsf{x}}(t). \end{array} \right.
$$

- Tune \hat{E} and \hat{W} so that $\|\bm{\Sigma}-\bm{\hat{\Sigma}}\|_{\mathcal{H}_{\infty}}$ or $\|\bm{\Sigma}-\bm{\hat{\Sigma}}\|_{\mathcal{H}_2}$ is minimized.
- $\hat{F} = \Pi^T F$, $\hat{H} = H \Pi$, and $\hat{D} = \Pi^T D$ (duplicate and zero columns removed).
- α and β are scalars chosen to ensure that any choice for \hat{E} and \hat{W} yields a Bounded-Input Bounded-Output ([BIB](#page-51-0)[O\)](#page-53-0) [sta](#page-52-0)[b](#page-53-0)[le](#page-0-0) [er](#page-67-0)[ro](#page-0-0)[r s](#page-67-0)[ys](#page-0-0)[tem](#page-67-0).

- The Petrov-Galerkin Projection (PGP) paradigm is often applied in clustering-based MR techniques after carefully choosing Π.
- Here, the reduced edge weights and nodal time-scales are parameterized and tuned for better results.

Problem Statement

Given the consensus network system Σ and the parameterized reduced consensus network system $\hat{\Sigma}$, solve the following optimization problems:

$$
\begin{aligned} \min_{\hat{\pmb{E}} \in \mathbb{D}_{++}^r, \hat{\mathcal{W}} \in \mathbb{D}_{++}^{|\hat{\mathcal{E}}|}} & \|\pmb{\Sigma} - \pmb{\hat{\Sigma}}\|_{\mathcal{H}_{\infty}}, \\ \min_{\hat{\pmb{E}} \in \mathbb{D}_{++}^r, \hat{\mathcal{W}} \in \mathbb{D}_{++}^{|\hat{\mathcal{E}}|}} & \|\pmb{\Sigma} - \pmb{\hat{\Sigma}}\|_{\mathcal{H}_2}, \end{aligned}
$$

where \mathbb{D}_{++}^n is the set of diagonal positive definite matrices of size $n\times n.$

(Cheng et al., 2019) and (Cheng et al., 2020)

$$
\min_{\hat{W}\in\mathbb{D}_{++}^{|\hat{\mathcal{E}}|}} \|\mathbf{\Sigma}-\mathbf{\hat{\Sigma}}\|_{\mathcal{H}_2} \text{ where } \hat{E}=\Pi^{\mathcal{T}} E\Pi.
$$

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 32 / 45

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

BIBO Stability of Error System

Realization for the error system $\Sigma - \hat{\Sigma}$:

$$
\Sigma - \hat{\Sigma} : \left\{ \begin{array}{l} \begin{bmatrix} \dot{x}(t) \\ \dot{\hat{x}}(t) \end{bmatrix} = \begin{bmatrix} -E^{-1}L & 0 \\ 0 & -\hat{E}^{-1}\hat{D}\hat{W}\hat{D}^T \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix} + \begin{bmatrix} E^{-1}F \\ \beta\hat{E}^{-1}\hat{F} \end{bmatrix} u(t), \right. \\ e(t) = \begin{bmatrix} H & -\alpha\hat{H} \end{bmatrix} \begin{bmatrix} x(t) \\ \hat{x}(t) \end{bmatrix}.
$$

Lemma 1

If
$$
\alpha\beta = \frac{tr(\hat{E})}{tr(E)}
$$
, then $\Sigma - \hat{\Sigma}$ is BIBO stable for all $\hat{E} \in \mathbb{D}_{++}^r$ and $\hat{W} \in \mathbb{D}_{++}^{|\hat{\mathcal{E}}|}$.

4 0 8

 $\left\{ \left\{ \bigoplus_{i=1}^{n} x_i \right\} \right\}$

 \rightarrow \equiv \rightarrow

BIBO Stability of Error System

A few remarks on Lemma 1:

- The condition on $\alpha\beta$ guarantees the BIBO stability of $\Sigma \hat{\Sigma}$ by cancelling the poles at 0 from the transfer function of $\Sigma - \hat{\Sigma}$.
- For such parameters α and β , the approximation errors given by $\|\mathbf{\Sigma}-\bm{\hat{\Sigma}}\|_{\mathcal{H}_{\infty}}$ and $\|\mathbf{\Sigma}-\bm{\hat{\Sigma}}\|_{\mathcal{H}_2}$ are bounded for any \hat{E} and \hat{W} .
- $\|\bm{\Sigma}-\bm{\hat{\Sigma}}\|_{\mathcal{H}_{\infty}}$ and $\|\bm{\Sigma}-\bm{\hat{\Sigma}}\|_{\mathcal{H}_2}$ are invariant under the specific choices of α and β as long as $\alpha\beta = \frac{tr(\hat{E})}{tr(E)}$ $\frac{tr(E)}{tr(E)}$.

Adopted convenient choice for α and β

$$
\alpha = 1
$$
 and $\beta = \frac{tr(\hat{E})}{tr(E)}$.

 QQQ

メ御 トメ ヨ トメ ヨ トー

\mathcal{H}_{∞} -based Optimization

- Although \hat{W} and \hat{E} are neatly decoupled from $\hat{\gamma}$ and X and $\psi_{\infty}(\hat{\gamma}, X)$ is linear in its arguments, $\phi_{\infty}(\hat{W}, \hat{E})$ is nonlinear in its arguments.
- We alternate between optimizing \hat{W} for fixed \hat{E} and vice-versa.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

\mathcal{H}_{∞} -based Optimization

- Constraint is dealt with by:
	- Iteratively solving a linearized optimization problem, where the concave term is linearized around the previous solution $\hat{W}_{(k-1)}$.
	- Linearizing the concave term $\phi_{\infty}(\hat{W})$, while making the constraint more restrictive, makes the optimization problem convex.

Algorithm 1 (A1): \mathcal{H}_{∞} -based optimization for fixed time-scales \hat{E}

Input:
$$
E, L, F, H, \Pi, \hat{E}, \hat{W}_0, \hat{\gamma}_0, \varepsilon
$$

\n**Output:** \hat{W}_*

\n**Initialize:** $k \leftarrow 0, \hat{W}_{(k)} \leftarrow \hat{W}_0, \text{ and } \hat{\gamma}_{(k)} \leftarrow \hat{\gamma}_0$

\n**While:** $\hat{\gamma}_{(k)} - \hat{\gamma}_{(k+1)} \geq \varepsilon$

\n**Solve:**

\n
$$
\min_{\hat{\gamma}, X \succ 0, \hat{W}} \hat{\gamma}_{(k+1)} \leftarrow \hat{\gamma}_{(k+1)} + D\phi_{\infty}(\hat{W}_{(k-1)})[\hat{W} - \hat{W}_{(k-1)}] \right) \leftarrow 0,
$$
\nwhere $\phi_{\infty}(\hat{W}) \prec \tilde{\phi}_{\infty}(\hat{W}) \prec 0$.

\n**Obtain:** \hat{W}_* and $\hat{\gamma}_*$

\n**Update:** $k \leftarrow k + 1, \hat{W}_{(k)} \leftarrow \hat{W}_*$, and $\hat{\gamma}_{(k)} \leftarrow \hat{\gamma}_*$ end

\mathcal{H}_{∞} -based Optimization

 \mathcal{H}_{∞} -based optimization problem for fixed \hat{W} :

- In this case, $\phi_{\infty}(\hat{E})$ is *not* concave in \hat{E} .
- More involved manipulations are required to solve the problem.
- The structure of $\phi_{\infty}(\hat{E})$ can be leveraged by
	- Treating \hat{E}^{-1} as the variable instead of \hat{E} .
	- Introducing a variable Z such that $Z = \hat{E}$.

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ \rightarrow $\mathcal{A} \oplus \mathcal{B}$ \rightarrow $\mathcal{A} \oplus \mathcal{B}$

\mathcal{H}_{∞} -based Optimization

 \mathcal{H}_{∞} -based optimization problem for fixed \hat{W} :

 $\phi_\infty(\hat E^{-1},Z)$ is concave in $(\hat E^{-1},Z).$

The equality constraint is split into two inequality constraints: **0** $(\hat{E}^{-1})^{-1} - Z \preceq 0 \iff \begin{bmatrix} \hat{E}^{-1} & \hat{E} \end{bmatrix}$ I Z $\Big] \preceq$ 0, which is an LMI. 2 $Z - (\hat{E}^{-1})^{-1} \preceq$ 0, which is a difference of two convex mappings.

KOD KOD KED KED DAR

Algorithm 2 (A2): \mathcal{H}_{∞} -based optimization for fixed edge weights \hat{W}

Input: E, L, F, H, Π , \hat{E}_0 , \hat{W} , $\hat{\gamma}_0$, ε Output: \hat{E}_* ${\sf Initialize:}\;\, k\leftarrow 0,\,(\hat E_{(k)}^{-1},Z_{(k)})\leftarrow(\hat E_0^{-1},\hat E_0)$, and $\hat\gamma_{(k)}\leftarrow\hat\gamma_0$ While: $\hat{\gamma}_{(k)} - \hat{\gamma}_{(k+1)} \geq \varepsilon$

Solve:

$$
\min_{\hat{\gamma}, X \succ 0, \hat{E}^{-1}, Z} \hat{\gamma}
$$
\ns.t.
$$
\psi_{\infty}(\hat{\gamma}, X) + \tilde{\phi}_{\infty}(\hat{E}^{-1}, Z) \prec 0,
$$
\n
$$
\begin{bmatrix} \hat{E}^{-1} & I \\ I & Z \end{bmatrix} \preceq 0, \quad Z - \tilde{f}(\hat{E}^{-1}) \preceq 0,
$$

where
$$
f(X) = X^{-1}
$$
.
\n**Obtain:** \hat{E}_*^{-1} , Z_* , and $\hat{\gamma}_*$
\n**Update:** $k \leftarrow k + 1$, $(\hat{E}_{(k)}^{-1}, Z_{(k)}) \leftarrow (\hat{E}_*^{-1}, \hat{E}_*)$, and $\hat{\gamma}_{(k)} \leftarrow \hat{\gamma}_*$
\n**end**

D. Abou Jaoude- American University of Beirut [FEANICSES Workshop 2022](#page-0-0) 40 / 45

\mathcal{H}_2 -based Optimization

A similar characterization for $\| \mathbf{\Sigma} - \mathbf{\hat{\Sigma}} \|_{\mathcal{H}_2}$ is used to formulate optimization problems for the independent selection of edge weights and nodal time-scales of $\hat{\Sigma}$.

 \mathcal{H}_2 -based optimization problem for fixed \hat{W} at iteration k :

$$
\min_{X \succ 0, \hat{E}^{-1}, Z, R} \quad \text{tr}(R)
$$
\ns.t.

\n
$$
\psi_2(X) + \tilde{\phi}_2(\hat{E}^{-1}, Z) \prec 0, \ Z - \tilde{f}(\hat{E}^{-1}) \preceq 0,
$$
\n
$$
\begin{bmatrix} X & \hat{\theta}(C + \hat{C})^T \\ * & R \end{bmatrix} \succ 0, \ \begin{bmatrix} \hat{E}^{-1} & I \\ * & Z \end{bmatrix} \succeq 0.
$$

All proposed algorithms can be initialized by the solution obtained from applying the Petrov-Galerkin Projection (PGP) paradigm.

Illustrative Example

Illustrative Example

Th following four algorithms are applied:

Algorithm (A1) outputs an \mathcal{H}_{∞} -suboptimal matrix of weights \hat{W}_* for a given matrix of time-scales \hat{E} .

Algorithm (A2) outputs an \mathcal{H}_{∞} -suboptimal matrix of time-scales \hat{E}_* for a given matrix of weights \hat{W} .

Algorithm (A3)* outputs an \mathcal{H}_2 -suboptimal matrix of weights \hat{W}_* for a given matrix of time-scales \hat{E} (Cheng et al., 2020).

Algorithm (A4) outputs an \mathcal{H}_2 -suboptimal matrix of time-scales \hat{E}_* for a given matrix of weights \hat{W} .

 OQ

イロト イ押 トイヨ トイヨト

Example Results

Table: Normalized reduction errors using proposed algorithms.

Table: Sample weights and time-scales returned by the proposed algorithms.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Conclusion

- Analyzed the \mathcal{H}_{∞} performance for the weighted and time-scaled edge consensus protocol by deriving expressions of and bounds on the \mathcal{H}_{∞} -norm.
- Derived new insights on minimizing the \mathcal{H}_{∞} -norm and proposed a versatile optimization setup for the selection of these parameters.
- Proposed \mathcal{H}_{∞} and \mathcal{H}_{2} -based model reduction methods for consensus network systems, whereby the parameterized edge weights and nodal time-scales of the reduced consensus network system are tuned via iterative algorithms.
- Improved on existing clustering based approaches by initializing the iterative algorithms using Petrov-Galerkin Projection output.

 QQ

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶