
Higher-Dimensional Timed and Hybrid Automata
Uli Fahrenberg #

EPITA Research and Development Laboratory (LRDE), France

Abstract
We introduce a new formalism of higher-dimen-
sional timed automata, based on Pratt and
van Glabbeek’s higher-dimensional automata and
Alur and Dill’s timed automata. We prove that
their reachability is PSPACE-complete and can
be decided using zone-based algorithms. We also
extend the setting to higher-dimensional hybrid
automata.

The interest of our formalism is in modeling
systems which exhibit both real-time behavior
and concurrency. Other existing formalisms
for real-time modeling identify concurrency
and interleaving, which, as we shall argue, is
problematic.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation →
Timed and hybrid models
Keywords and Phrases concurrency, real time, higher-dimensional automaton, timed automaton
Digital Object Identifier 10.4230/LITES.8.2.3
Acknowledgements The author acknowledges the support of the Chaire ISC : Engineering Complex
Systems and École polytechnique where most of this work was carried out. He is most grateful to Kim
G. Larsen and Eric Goubault for numerous interesting discussions on the subject of this paper.
Received 2020-08-04 Accepted 2022-01-28 Published 2022-08-31
Editor Alessandro Abate, Uli Fahrenberg, and Martin Fränzle
Special Issue Special Issue on Distributed Hybrid Systems

1 Introduction
In approaches to non-interleaving concurrency, more than one event may happen at the same
time. There is a multitude of formalisms for modeling and analyzing such concurrent systems,
e.g., Petri nets [47], event structures [46], configuration structures [58, 57], asynchronous transition
systems [8, 50], or more recent variations such as dynamic event structures [6] and Unravel
nets [16]. They all share the convention of differentiating between concurrent and interleaving
executions; using CCS notation [44], a|b ̸= a.b + b.a.

For modeling and analyzing embedded or cyber-physical systems, formalisms which use real
time are available. These include timed automata [5], time Petri nets [43], timed-arc Petri
nets [38], or various classes of hybrid automata [3]. Common for them all is that they identify
concurrent and interleaving executions; here, a|b = a.b + b.a.

We are interested in formalisms for real-time non-interleaving concurrency. Hence we would
like to differentiate between concurrent and interleaving executions and be able to model and
analyze real-time properties. Few such formalisms seem to be available in the literature. The
situation is perhaps best epitomized by the fact that there is a natural non-interleaving semantics
for Petri nets [34] which is also used in practice [22, 23], but almost all work on real-time extensions
of Petri nets [43, 38, 51, 53], including the popular tool TAPAAL,1 use an interleaving semantics.
(A notable exception here are the time Petri nets of [43] which do have a non-interleaving real-time
semantics [18, 17, 7, 32] which has also been used for networks of timed automata [15].)

Also Uppaal,2 the successful tool for modeling and analyzing networks of timed automata, uses
an interleaving semantics for such networks. This leads to great trouble with state-space explosion
(see also Sect. 7 of this paper) which can be avoided with a non-interleaving semantics such as we

1 http://www.tapaal.net/
2 http://www.uppaal.org/

© Uli Fahrenberg;
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)

Leibniz Transactions on Embedded Systems, Vol. 8, Issue 2, Article No. 3, pp. 03:1–03:16
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:uli@lrde.epita.fr
https://orcid.org/0000-0001-9094-7625
https://doi.org/10.4230/LITES.8.2.3
http://www.tapaal.net/
http://www.uppaal.org/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

03:2 Higher-Dimensional Timed and Hybrid Automata

propose here. Intuitively, interleaving composition of networks adds n! different interleavings for
every concurrent composition of n independent events, whereas in the non-interleaving semantics,
only one (n-dimensional) object is added to the system.

We introduce higher-dimensional timed automata (HDTA), a formalism based on the (non-
interleaving) higher-dimensional automata of Pratt and van Glabbeek [48, 54] (see also [56]) and
the timed automata of Alur and Dill [5, 4]. We show that HDTA can model interesting phenomena
which cannot be captured by neither of the formalisms on which they are based, but that their
analysis remains just as accessible as the one of timed automata. That is, reachability for HDTA
is PSPACE-complete and can be decided using zone-based algorithms.

In the above-mentioned interleaving real-time formalisms, continuous flows and discrete
actions are orthogonal in the sense that executions alternate between real-time delays and
discrete actions which are immediate, i.e., take no time. (In the hybrid setting, these are usually
called flows and mode changes, respectively.) Already Sifakis and Yovine [52] notice that this
significantly simplifies the semantics of such systems and hints that this is a main reason for the
success of these formalisms (see the more recent [53] for a similar statement).

In the (untimed) non-interleaving setting, on the other hand, events have a (logical;
unspecified) duration. This can be seen, for example, in the ST-traces of [55] where actions
have a start (a+) and a termination (a−) and are (implicitly) running between their start and
termination, or in the representation of concurrent systems as Chu spaces over 3 = {0, 1

2 , 1},
where 0 is interpreted as “before”, 1

2 as “during”, and 1 as “after”, see [49]. Intuitively, only if
events have duration can one make statements such as “while a is running, b starts, and then
while b is running, a terminates”.

In our non-interleaving real-time setting, we hence abandon the assumption that actions are
immediate. Instead, we take the view that actions start and then run during some specific time
before terminating. While this runs counter to the standard assumption in most of real-time and
hybrid modeling, a similar view can be found, for example, in Cardelli’s [14].

Given that we abandon the orthogonality between continuous flows and discrete actions, we
find it remarkable to see that the standard techniques used for timed automata transfer to our
non-interleaving setting. Equally remarkable is, perhaps, the fact that even though “[t]he timed-
automata model is at the very border of decidability, in the sense that even small additions to the
formalism [. . .] will soon lead to the undecidability of reachability questions” [1], our extension
to higher dimensions and non-interleaving concurrency is completely free of such trouble.

We also show that our HDTA model naturally extends to a formalism of higher-dimensional
hybrid automata (HDHA), which can be used to model cyber-physical systems which exhibit
concurrency. We introduce tensor products both for HDTA and HDHA which can be used for a
concurrent composition of systems which avoids state-space explosion.

The contributions of this paper are, thus, (1) the introduction of a new formalism of HDTA, a
natural extension of higher-dimensional automata and timed automata, in Sect. 3; (2) the proof
that reachability for HDTA is PSPACE-complete and decidable using zone-based algorithms, in
Sects. 5 and 6; (3) the introduction of a tensor product for HDTA which can be used for parallel
composition, in Sect. 7; and (4) the extension of the definition to higher-dimensional hybrid
automata together with a non-trivial example of two independently bouncing balls, in Sect. 8.

This paper is based on the conference contribution [27], which has been presented at the
6th IFAC Conference on Analysis and Design of Hybrid Systems in Oxford, UK. Compared to
this previous paper, we have included proofs of all statements, improved the presentation and
examples, and added a precise definition of tensor product of higher-dimensional hybrid automata.

U. Fahrenberg 03:3

xδ0
1x δ1

1x

δ0
2x

δ1
2x

δ0
1δ0

2x = δ0
1δ0

1x

δ0
1δ1

2x = δ1
1δ0

1x

δ1
1δ0

2x = δ0
1δ1

1x

δ1
1δ1

2x = δ1
1δ1

1x

Figure 1 A 2-cube x with its four faces δ0
1x, δ1

1x, δ0
2x, δ1

2x and four corners.

2 Preliminaries

We recall a few facts about higher-dimensional automata and timed automata.

2.1 Higher-Dimensional Automata
Higher-dimensional automata are a generalization of finite automata which permit the
specification of independence of actions through higher-dimensional elements. That is, they
consist of states and transitions, but also squares which signify that two events are independent,
cubes which denote independence of three events, etc. To introduce them properly, we need to
start with precubical sets.

A precubical set is a graded set X =
⋃

n∈N Xn, with Xn ∩Xm = ∅ for n ̸= m, together with
mappings δν

k,n : Xn → Xn−1, k = 1, . . . , n, ν = 0, 1, satisfying the precubical identity

δν
k,n−1δµ

ℓ,n = δµ
ℓ−1,n−1δν

k,n (k < ℓ) .

Elements of Xn are called n-cubes, and for x ∈ Xn, n = dim x is its dimension. The
mappings δν

k,n are called face maps, and we will usually omit the extra subscript n and write
δν

k instead of δν
k,n. Intuitively, each n-cube x ∈ Xn has n lower faces δ0

1x, . . . , δ0
nx and n upper

faces δ1
1x, . . . , δ1

nx, and the precubical identity expresses the fact that non-parallel (n − 1)-faces
of an n-cube meet in common (n− 2)-faces; see Figure 1 for an example.

A precubical set X is finite if X is finite as a set. This means that Xn is finite for each n ∈ N
and that X is finite-dimensional: there exists N ∈ N such that Xn = ∅ for all n ≥ N .

Let Σ be a finite set of actions and recall that a multiset over Σ is a mapping Σ → N; we
denote the set of such by NΣ. The cardinality of S ∈ NΣ is |S| =

∑
a∈Σ S(a).

▶ Definition 1. A higher-dimensional automaton (HDA) is a structure (X, x0, Xf , λ), where X is
a finite precubical set with initial state x0 ∈ X0 and accepting states Xf ⊆ X0, and λ : X → NΣ

is a labeling function such that for every x ∈ X,
|λ(x)| = dim x,
λ(δ0

kx) = λ(δ1
kx) for all k ≤ dim x, and

λ(x) \ λ(δ0
kx) is a singleton for all k ≤ dim x.

The conditions on the labeling ensure that the label of an n-cube is an extension, by one
event, of the label of any of its faces. The computational intuition is that when passing from
a lower face δ0

kx of x ∈ X to x itself, the (unique) event in λ(x) \ λ(δ0
kx) is started, and when

passing from x to an upper face δ1
ℓ x, the event in λ(x) \ λ(δ1

ℓ x) is terminated.
HDA can indeed model higher-order concurrency of actions. As an example, the hollow cube

on the left of Figure 2, consisting of all six faces of a cube but not of its interior, models the
situation where the actions a, b and c are mutually independent, but cannot be executed all three
concurrently. The full cube on the right of Figure 2, on the other hand, has a, b and c independent

LITES

03:4 Higher-Dimensional Timed and Hybrid Automata

as a set. The left HDA might model a system of three users connected to two printers, so that
every two of the users can print concurrently but not all three, whereas the right HDA models a
system of three users connected to (at least) three printers.

▶ Remark. Instead of using multisets as we do here, labeling of precubical sets is commonly
introduced by defining a precubical set !Σ induced by Σ and then letting the labeling be a
precubical morphism, see for example [24, 36]. This has the advantage that HDA can be posed
as a slice category, but we will not need this here.

There is a rich literature on the geometric and topological analysis of HDA, starting with their
geometric realization as directed topological spaces. The interested reader is referred to [37, 30,
31, 28, 24, 25].

2.2 Timed Automata
Timed automata extend finite automata with clock variables and invariants which permit the
modeling of real-time properties. Let C be a finite set of clocks. Φ(C) denotes the set of clock
constraints defined as

Φ(C) ∋ ϕ1, ϕ2 ::= c ▷◁ k | ϕ1 ∧ ϕ2 (c ∈ C, k ∈ N, ▷◁ ∈ {<,≤,≥, >}) .

Hence a clock constraint is a conjunction of comparisons of clocks to integers.
A clock valuation is a mapping v : C → R≥0, where R≥0 denotes the set of non-negative real

numbers. The initial clock valuation is v0 : C → R≥0 given by v0(c) = 0 for all c ∈ C. For
v ∈ RC

≥0, d ∈ R≥0, and C ′ ⊆ C, the clock valuations v + d and v[C ′ ← 0] are defined by

(v + d)(c) = v(c) + d ; v[C ′ ← 0](c) =
{

0 if c ∈ C ′ ,

v(c) if c /∈ C ′ .

For v ∈ RC
≥0 and ϕ ∈ Φ(C), we write v |= ϕ if v satisfies ϕ and JϕK = {v : C → R≥0 | v |= ϕ}.

▶ Definition 2. A timed automaton is a structure (Q, q0, Qf , I, E), where Q is a finite set of
locations with initial location q0 ∈ Q and accepting locations Qf ⊆ Q, I : Q → Φ(C) assigns
invariants to states, and E ⊆ Q× Φ(C)× Σ× 2C ×Q is a set of guarded transitions.

The semantics of a timed automaton A = (Q, q0, Qf , I, E) is a (usually uncountably infinite)
transition system JAK = (S, s0, Sf ,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(q, v) ∈ Q× RC
≥0 | v |= I(q)}

s0 = (q0, v0) Sf = S ∩ Qf×RC
≥0

⇝ = {((q, v), (q, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= I(q)}
∪ {((q, v), (q′, v′)) | ∃(q, ϕ, a, C ′, q′) ∈ E : v |= ϕ, v′ = v[C ′ ← 0]}

a

c

b a

c

b

Figure 2 Two example HDA. Left, the hollow cube; right, the full cube.

U. Fahrenberg 03:5

Note that we are ignoring the labels of transitions here, as we will be concerned with reachability
for now. As usual, we say that A is reachable iff there exists a finite path s0 ⇝ · · · ⇝ s in JAK
for which s ∈ Sf .

The definition of ⇝ ensures that actions are immediate: whenever (q, ϕ, a, C ′, q′) ∈ E, then
A passes from (q, v) to (q′, v′) without any delay. Time progresses only during delays (q, v) ⇝
(q, v + d) in locations.
▶ Remark. Timed automata have a long and successful history in the modeling and verification
of real-time computing systems. Several tools exist which are routinely applied in industry, such
as Uppaal [42, 9], RED [59] or Kronos [13]. The interested reader is referred to [12, 41, 1].

3 Higher-Dimensional Timed Automata

Unlike timed automata, higher-dimensional automata make no formal distinction between states
(0-cubes), transitions (1-cubes), and higher-dimensional cubes. We transfer this intuition to
higher-dimensional timed automata, so that each n-cube has an invariant which specifies when it
is enabled and an exit condition giving the clocks to be reset when leaving:

▶ Definition 3. A higher-dimensional timed automaton (HDTA) is a structure
(L, l0, Lf , λ, inv, exit), where (L, l0, Lf , λ) is a finite higher-dimensional automaton and inv : L→
Φ(C), exit : L→ 2C assign invariant and exit conditions to each n-cube.

The semantics of a HDTA A = (L, l0, Lf , λ, inv, exit) is a (usually uncountably infinite)
transition system JAK = (S, s0, Sf ,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(l, v) ∈ L× RC
≥0 | v |= inv(l)}

s0 = (l0, v0) Sf = S ∩ Lf×RC
≥0

⇝ = {((l, v), (l, v + d)) | ∀0 ≤ d′ ≤ d : v + d′ |= inv(l)}
∪ {((δ0

kl, v), (l, v′)) | k ∈ {1, . . . , dim l}, v′ = v[exit(δ0
kl)← 0] |= inv(l)}

∪ {((l, v), (δ1
kl, v′)) | k ∈ {1, . . . , dim l}, v′ = v[exit(l)← 0] |= inv(δ1

kl)}

We omit labels from the semantics, as we will be concerned only with reachability for now: Given
a HDTA A, does there exist a finite path s0 ⇝ · · ·⇝ s in JAK such that s ∈ Sf ?

Note that in the definition of ⇝ above, we allow time to evolve in any n-cube in L. Hence
transitions (i.e., 1-cubes) are not immediate. The second line in the definition of ⇝ defines the
passing from an (n−1)-cube to an n-cube, i.e., the start of a new concurrent event, and the third
line describes what happens when finishing a concurrent event. Exit conditions specify which
clocks to reset when leaving a cube.

▶ Example 4. We give a few examples of two-dimensional timed automata. The first, in Figure 3,
models two actions, a and b, which can be performed concurrently. It consists of four states (0-
cubes) l0, l1, l2, lf , four transitions (1-cubes) e1 through e4, and one ab-labeled square (2-cube) u.
This HDTA models that performing a takes between two and four time units, whereas performing
b takes between one and three time units. To this end, we use two clocks x and y which are reset
when the respective actions are started and then keep track of how long they are running.

The clocks are reset by the condition exit(l0) = {x, y}, and the invariants x ≤ 4 at the a-
labeled transitions e1, e4 and at the square u ensure that a takes at most four time units. The
invariants x ≥ 2 at l1, e3 and lf take care that a cannot finish before two time units have passed.
Note that x is also reset when exiting e2 and l2, ensuring that regardless when a is started,
whether before b, while b is running, or after b is terminated, it must take between two and four
time units.

LITES

03:6 Higher-Dimensional Timed and Hybrid Automata

l0 l1

l2 lf

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1; x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0
e1 a

y ≤ 3
x← 0

e2

b

x ≥ 2
y ≤ 3
e3

b

x ≤ 4 ∧ y ≥ 1
e4 a

x ≤ 4 ∧ y ≤ 3
ab

u

Figure 3 The HDTA of Example 4.

x, y ← 0 x ≥ 2; y ← 0

y ≥ 1; x← 0 x ≥ 2 ∧ y ≥ 1

x ≤ 4; y ← 0
a

y ≤ 3
x ≥ 1
x← 0

b
x ≥ 2
y ≤ 3b

x ≤ 5 ∧ y ≥ 1
a

1 ≤ x ≤ 4 ∧ y ≤ 3
ab

Figure 4 The HDTA of Example 5.

▶ Example 5. In the HDTA shown in Figure 4 (where we have omitted the names of states etc.
for clarity and show changes to Figure 3 in bold), invariants have been modified so that b can
only start after a has been running for one time unit, and if b finishes before a, then a may run
one time unit longer. Hence an invariant x ≥ 1 is added to the two b-labeled transitions and to
the ab-square (at the right-most b-transition x ≥ 1 is already implied), and the condition on x at
the top a-transition is changed to x ≤ 5. Note that the left edge e2 is now permanently disabled:
before entering it, x is reset to zero, but its edge invariant is x ≥ 1. This is as expected, as b

should not be able to start before a.

▶ Example 6. The HDTA in Figure 5, where we again show changes to Figure 4 in bold, models
the additional constraint that b also finish one time unit before a. To this end, an extra clock
z is introduced which is reset when b terminates and must be at least 1 when a is terminating.
After these changes, the right b-labeled edge is deadlocked: when leaving it, z is reset to zero but
needs to be at least one when entering the accepting state. Again, this is expected, as a should
not terminate before b.

x, y ← 0 x ≥ 2 ∧ z ≥ 1; y ← 0

y ≥ 1; x← 0 x ≥ 2 ∧ y ≥ 1 ∧ z ≥ 1

x ≤ 4; y ← 0
a

x ≥ 1
y ≤ 3

x, z ← 0
b

x ≥ 2
y ≤ 3
z ≥ 1
z ← 0

b

x ≤ 5 ∧ y ≥ 1
a

1 ≤ x ≤ 4 ∧ y ≤ 3
z ← 0; ab

Figure 5 The HDTA of Example 6.

U. Fahrenberg 03:7

As both vertical edges are now permanently disabled, the accepting state can only be reached
through the square. This shows that reachability for HDTA cannot be reduced to one-dimensional
reachability along transitions and relates them to the partial HDA of [29, 20].

▶ Remark. In our model of HDTA, the exit conditions of a cube are the same regardless of
how the cube is exited. One could imagine an extension of the model where exit conditions
may be different depending on whether an action is terminated or a new one is started, so that
exit : L × L ⇀ 2C would be a partial function from pairs of cubes, one a face of the other. Our
results still hold for this extension of the model, but we have not seen use for it in examples, and
for the sake of simplicity, we do not pursue it here.

4 One-Dimensional Timed Automata

We work out the relation between one-dimensional HDTA (i.e., 1DTA) and standard timed
automata. Note that this is not trivial, as in timed automata, clocks can only be reset at
transitions, and, semantically, transitions take no time. In contrast, in our 1DTA, resets can
occur in states and transitions may take time.

▶ Proposition 7. There is a linear-time algorithm which, given any timed automaton A,
constructs a 1DTA A′, with one extra clock, so that A is reachable iff A′ is.

Proof. Let A = (Q, q0, Qf , I, E) be a timed automaton. It is clear that L = Q ∪ E forms a one-
dimensional precubical set, with L0 = Q, L1 = E, δ0

1(q, ϕ, a, C ′, q′) = q, and δ1
1(q, ϕ, a, C ′, q′) = q′.

Let l0 = q0 and Lf = Qf . In order to make transitions immediate, we introduce a fresh clock
c /∈ C. For q ∈ Q, let λ(q) = ∅, inv(q) = I(q), and exit(q) = {c}. For e = (q, ϕ, a, C ′, q′) ∈ E,
put λ(e) = {a}, inv(e) = ϕ ∧ (c ≤ 0), and exit(e) = C ′. We have defined a 1DTA A′ =
(L, l0, Lf , λ, inv, exit) (over clocks C ∪ {c}). As c is reset whenever exiting a state, and every
transition has c ≤ 0 as part of its invariant, it is clear that transitions in A′ take no time, and
the claim follows. ◀

▶ Proposition 8. There is a linear-time algorithm which, given any 1DTA A, constructs a timed
automaton A′ over the same clocks such that A is reachable iff A′ is.

Proof. Let A = (L, l0, Lf , λ, inv, exit) be a 1DTA, we construct a timed automaton A′ =
(Q, q0, Qf , I, E). Because transitions in A may take time, we cannot simply let Q = L0, but
need to add extra states corresponding to the edges in L1. Let, thus, Q = L, I = inv, and

E = {(δ0
1x, tt, τ, exit(δ0

1x), x), (x, tt, λ(x), exit(x), δ1
1x) | x ∈ L1} ,

where τ /∈ Σ is a fresh (silent) action; see Figure 6 for an illustration.
Semantically, this converts the 0-cube δ0

1x to the location δ0
1x; but its exit condition C1 is

moved to the new outgoing τ -edge. Thus, the location δ0
1x is enabled precisely when the 0-cube

δ0
1x is enabled, and when it is exited by immediate execution of the τ -edge, its exit condition is

applied. Similar considerations apply to the conversion of the 1-cube x to the location x; thus,
A′ is reachable iff A is. ◀

Note that even though silent transitions in timed automata are a delicate matter [11], the fact
that we add them in the last proof is unimportant as we are only concerned with reachability.
PSPACE-completeness of reachability for timed automata [2] and Proposition 7 now imply the
following:

▶ Corollary 9. Reachability for HDTA is PSPACE-hard.

LITES

03:8 Higher-Dimensional Timed and Hybrid Automata

ϕ1, C1

δ0
1x

ϕ3, C3

δ1
1x

ϕ2, C2, a

x

ϕ1

δ0
1x

ϕ2

x

ϕ3

δ1
1x

tt, C1
τ

tt, C2
a

Figure 6 Conversion of 1DTA edge to timed automaton.

5 Reachability for HDTA is PSPACE-Complete

We now turn to extend the notion of regions to HDTA, in order to show that reachability for
HDTA is decidable in PSPACE.

▶ Definition 10. Let (L, l0, Lf , λ, inv, exit) be a HDTA and R ⊆ L× RC
≥0 × L× RC

≥0. Then R is
an untimed bisimulation if ((l0, v0), (l0, v0)) ∈ R and, for all ((l1, v1), (l2, v2)) ∈ R,

l1 ∈ Lf iff l2 ∈ Lf ;
for all (l1, v1)⇝ (l′

1, v′
1), also (l2, v2)⇝ (l′

2, v′
2) for some ((l′

1, v′
1), (l′

2, v′
2)) ∈ R;

for all (l2, v2)⇝ (l′
2, v′

2), also (l1, v1)⇝ (l′
1, v′

1) for some ((l′
1, v′

1), (l′
2, v′

2)) ∈ R.

For a HDTA A, let MA denote the maximal constant appearing in any inv(l) for l ∈ L, and
let ∼=MA

denote the standard region equivalence [5] on RC
≥0 defined as follows. For d ∈ R≥0, write

⌊d⌋ and ⟨d⟩ for the integral, respectively fractional, parts of d, and then for v, v′ : C → R≥0,
v ∼=MA

v′ iff
⌊v(x)⌋ = ⌊v′(x)⌋ or v(x), v′(x) > MA, for all x ∈ C,
⟨v(x)⟩ = 0 iff ⟨v′(x)⟩ = 0, for all x ∈ C with v(x) ≤MA, and
⟨v(x)⟩ ≤ ⟨v(y)⟩ iff ⟨v′(x)⟩ ≤ ⟨v′(y)⟩ for all x, y ∈ C with v(x) ≤MA and v(y) ≤MA.

Extend ∼=MA
to JAK by defining (l, v) ∼=MA

(l′, v′) iff l = l′ and v ∼=MA
v′.

▶ Lemma 11. ∼=MA
is an untimed bisimulation.

Proof. This follows from standard properties of region equivalence [5]. First, (l0, v0) ∼=MA

(l0, v0), and for all (l1, v1) ∼=MA
(l2, v2), l1 ∈ Lf ⇔ l2 ∈ Lf because l1 = l2.

Let (l, v1) ∼=MA
(l, v2) and (l, v1)⇝ (l′, v′

1); we show that there is v′
2 such that (l, v2)⇝ (l′, v′

2)
and (l′, v′

1) ∼=MA
(l′, v′

2). The symmetric case is analogous.
Assume v′

1 = v1 + d and l′ = l, then we have d′ such that v′
2 := v2 + d′ ∼=MA

v1 + d, but then
also (l, v2)⇝ (l′, v′

2) and (l, v′
1) ∼=MA

(l, v′
2).

Assume l = δ0
kl′ for some k and v′

1 = v1[exit(l) ← 0] |= inv(l′). Let v′
2 = v2[exit(l) ← 0], then

v′
2
∼=MA

v′
1 and v′

2 |= inv(l′), hence (l, v2)⇝ (l′, v′
2) and (l, v′

1) ∼=MA
(l, v′

2).
Assume l′ = δ1

kl for some k and v′
1 = v1[exit(l) ← 0] |= inv(l′). Let v′

2 = v2[exit(l) ← 0], then
v′

2
∼=MA

v′
1 and v′

2 |= inv(l′), hence (l, v2)⇝ (l′, v′
2) and (l, v′

1) ∼=MA
(l, v′

2). ◀

For any HDTA A, the quotient of JAK = (S, s0, Sf ,⇝) under an untimed bisimulation R is
defined, as usual, as JAK/R = (S/R, [s0]R, Sf /R, ⇝̃), where S/R is the set of equivalence classes,
[s0]R is the equivalence class which contains s0, and ⇝̃ ⊆ S/R × S/R is defined by s̃ ⇝̃ s̃′ iff
∃s ∈ s̃, s′ ∈ s̃′ : s⇝ s′.

▶ Lemma 12. Let A be a HDTA and R an untimed bisimulation on A. Then A is reachable iff
JAK/R is.

U. Fahrenberg 03:9

Proof. By definition, an accepting location is reachable in A iff an accepting state is reachable
in JAK. On JAK, R is a standard bisimulation, hence the claim follows. ◀

▶ Lemma 13. For any HDTA A, the quotient JAK/∼=MA
is finite.

Proof. This follows immediately from the standard fact that the set of clock regions,
i.e., RC

≥0/∼=MA
, is finite [5]. ◀

The size of JAK/∼=MA
is exponential in the size of A, but reachability in JAK/∼=MA

can be
decided in PSPACE, see [5]. Together with Corollary 9, we conclude:

▶ Theorem 14. Reachability for HDTA is PSPACE-complete.

6 Zone-Based Reachability

We show that the standard zone-based algorithm for checking reachability in timed automata
also applies in our HDTA setting. This is important, as zone-based reachability checking is at
the basis of the success of tools such as Uppaal, see [42].

Recall that the set Φ+(C) of extended clock constraints over C is defined by the grammar

Φ+(C) ∋ ϕ1, ϕ2 ::= c ▷◁ k | c1 − c2 ▷◁ k | ϕ1 ∧ ϕ2 (c, c1, c2 ∈ C, k ∈ Z, ▷◁ ∈ {<,≤,≥, >}),

and that a zone over C is a subset Z ⊆ RC
≥0 which can be represented by an extended clock

constraint ϕ, i.e., such that Z = JϕK. Let Z(C) denote the set of zones over C.
For a zone Z ∈ Z(C) and C ′ ⊆ C, the delay and reset of Z are given by Z↑ = {v + d | v ∈ Z}

and Z[C ′ ← 0] = {v[C ′ ← 0] | v ∈ Z}; these are again zones, and their representation by an
extended clock constraint can be efficiently computed [10]. Also zone inclusion Z ′ ⊆ Z can be
efficiently decided.

The zone graph of a HDTA A = (L, l0, Lf , λ, inv, exit) is a (usually infinite) transition system
Z(A) = (S, s0, Sf ,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(l, Z) ∈ L×Z(C) | Z ⊆ Jinv(l)K}
s0 = (l0, Jv0K↑ ∩ Jinv(l0)K) Sf = S ∩ Lf×Z(C)
⇝ = {((δ0

kl, Z), (l, Z ′)) | k ∈ {1, . . . , dim l}, Z ′ = Z[exit(δ0
kl)← 0]↑ ∩ Jinv(l)K}

∪ {((l, Z), (δ1
kl, Z ′)) | k ∈ {1, . . . , dim l}, Z ′ = Z[exit(l)← 0]↑ ∩ Jinv(δ1

kl)K}

As an example, Figure 7 shows the zone graph of the HDTA in Figure 3 (Example 4), with
zones displayed graphically using x as the horizontal axis and y as the vertical. (We have taken the
liberty to simplify by computing unions of zones at the locations u, e3 and e4 before proceeding.)

▶ Lemma 15. For any HDTA A, an accepting location is reachable in A iff an accepting state is
reachable in Z(A).

Proof. This follows from standard arguments as to the soundness and completeness of the zone
abstraction, see [5]. ◀

Any standard normalization technique [10] may now be used to ensure that only a finite
portion of the zone graph Z(A) is visited, and then the standard zone algorithms can be employed
to efficiently decide reachability in HDTA.

LITES

03:10 Higher-Dimensional Timed and Hybrid Automata

l0 e1 l1

u

e2

l2

u

e4

e4

e3

e3

lf

lf

Figure 7 Zone graph of the HDTA in Figure 3.

x← 0 x ≥ 2 y ← 0 y ≥ 1x ≤ 4
a

y ≤ 3
b

Figure 8 The two 1DTA of Example 17.

7 Parallel Composition of HDTA

There is a tensor product on precubical sets which extends to HDTA and can be used for parallel
composition (below we use ⊔ for disjoint unions):

▶ Definition 16. Let Ai = (Li, li,0, Li,f , λi, invi, exiti), for i = 1, 2, be HDTA. The tensor product
of A1 and A2 is A1 ⊗A2 = (L, l0, Lf , λ, inv, exit) given as follows:

Ln =
⊔

p+q=n

L1
p × L2

q l0 = (l1,0, l2,0) Lf = L1,f × L2,f

δν
i (l1, l2) =

{
(δν

i l1, l2) if i ≤ dim l1

(l1, δν
i−dim l1 l2) if i > dim l1

λ(l1, l2) = λ(l1) ⊔ λ(l2) inv(l1, l2) = inv(l1) ∧ inv(l2)
exit(l1, l2) = exit(l1) ⊔ exit(l2)

Intuitively, tensor product is asynchronous parallel composition, or independent product. In
combination with relabeling and restriction, any parallel composition operator can be obtained,
see [60] or [24] for the special case of HDA.

U. Fahrenberg 03:11

x ≤ D

x ≤ D x ≤ D

rec[i]?

rec[i]? rec[i]?

w[i]! y > d

rec[(i+1)%N]!

y > d

rec[(i+1)%N]! w[i]!

rec[i]? x, y ← 0

Figure 9 A single node in Milner’s scheduler from [19].

▶ Example 17. Of the two 1DTA in Figure 8, the first models the constraint that performing
the action a takes between two and four time units, and the second, that performing b takes
between one and three time units. (In the notation of [14], these are the processes a[2]:a(2):0 and
b[1]:b(2):0.) Their tensor product is precisely the HDTA of Example 4.

▶ Example 18. Using tensor product for parallel composition, one can avoid introducing spurious
interleavings and thus combat state-space explosion. As an example, we recall the real-time
version of Milner’s scheduler from [19], a real-time round-robin scheduler in which the nodes are
simple timed automata. Figure 9 shows one node in the scheduler, with two transitions from
the initial to the topmost state, one that outputs w[i] (“work”) and another that passes on the
token (rec[(i+1)%N]!). These transitions are independent, but because of the limitations of the
timed-automata formalism, they have to be modeled as an interleaving diamond. Apart from the
number N of nodes the model has two other parameters, real numbers d < D that specify the
time interval within which the tokens have to be passed on.

When a larger number of nodes (N = 30, say) are composed into a scheduler, a high amount
of interleaving is generated: but most of it is spurious, owing to constraints of the modeling
language rather than properties of the system at hand. That is, most of the interleaving in
the composed model is an artefact of the modeling formalism and denotes, so to say, higher-
dimensional concurrent structures which have been forgotten. The authors of [19] show that
especially when d is much smaller than D (for example, d = 4 and D = 30), verification of the
scheduler becomes impossible already for N = 6 nodes.

One can use methods from partial order reduction [33] to detect spurious interleavings. Aside
from the fact that this has proven to be largely impractical for timed automata [39], we also argue
that by using HDTA as a modeling language, partial order reduction is, so to speak, built into
the model. Spurious interleavings are taken care of during the modeling phase, instead of having
to be detected during the verification phase.

8 Higher-Dimensional Hybrid Automata

We show that our definition of HDTA extends to one for higher-dimensional hybrid automata.
Let X be a finite set of variables, Ẋ = {ẋ | x ∈ X}, X ′ = {x′ | x ∈ X}, and Pred(Y) the set of
(arithmetic) predicates on free variables in Y .

LITES

03:12 Higher-Dimensional Timed and Hybrid Automata

inv : x1, x2 ≥ 0
flow : ẋ1 = v1, ẋ2 = v2, v̇1 = v̇2 = −g,

ṙ1 = ṙ2 = 0
exit : r′

1 = r′
2 = 0

inv : x1 = 0, v1 ≤ 0, r1 ≤ ϵ, x2 ≥ 0
flow : ẋ1 = 0, v̇1 = 0, ṙ1 = 1,

ẋ2 = v2, v̇2 = −g, ṙ2 = 0
exit : r′

1 = r′
2 = 0, v′

1 = −cv1

inv : x2 = 0, v2 ≤ 0, r2 ≤ ϵ, x1 ≥ 0
flow : ẋ2 = 0, v̇2 = 0, ṙ2 = 1,

ẋ1 = v1, v̇1 = −g, ṙ1 = 0
exit : r′

1 = r′
2 = 0, v′

2 = −cv2

Figure 10 Two independently bouncing balls (opposite edges identified).

▶ Definition 19. A higher-dimensional hybrid automaton (HDHA) is a structure
(L, λ, init, inv, flow, exit), where (L, λ) is a finite higher-dimensional automaton and init, inv : L→
Pred(X), flow : L→ Pred(X ∪ Ẋ), and exit : L → Pred(X ∪ X ′) assign initial, invariant, flow,
and exit conditions to each n-cube.

Note that we have removed initial and final locations from the definition; this is standard
for hybrid automata. Also, remark how this continues our mantra that there is no conceptual
difference between states and transitions; everything is an n-cube, and what are transition guards
in hybrid automata are now invariants.

The semantics of a HDHA A = (L, λ, init, inv, flow, exit) is a (usually uncountably infinite)
transition system JAK = (S, S0,⇝), with ⇝ ⊆ S × S, given as follows:

S = {(l, v) ∈ L× RX
≥0 | v |= inv(l)}

S0 = {(l, v) ∈ S | v |= init(l)}
⇝ = {((l, v), (l, v′)) | ∃d ≥ 0, f ∈ D([0, d],RX) : f(0) = v, f(d) = v′,

∀t ∈]0, d[: f(t) |= inv(q), (f(t), ḟ(t)) |= flow(q)}
∪ {((δ0

kl, v), (l, v′)) | k ∈ {1, . . . , dim l}, (v, v′) |= exit(δ0
kl)}

∪ {((l, v), (δ1
kl, v′)) | k ∈ {1, . . . , dim l}, (v, v′) |= exit(l)}

Here D(D1, D2) denotes the set of differentiable functions D1 → D2, and we write (v, v̇) |= flow(q)
to mean that the predicate flow(q) on X ∪ Ẋ evaluates to true when the variables are replaced
by their values in v and v̇; similarly for (v, v′) |= exit(l).

▶ Example 20. As a non-trivial example, we show a 2DHA which models two independently
bouncing balls, following the temporal regularization from [40], in Figure 10. Here, the 2-cube
models the state in which both balls are in the air. Its left and right edges are identified, as are
its lower and upper edges, so that topologically, this model is a torus.

Its left / right edge is the state in which the second ball is in the air, whereas the first ball
is in its ϵ-regularized transition (ϵ > 0) from falling to raising (v′

1 = −cv, for some c ∈]0, 1[).
Similarly, its lower / upper edge is the state in which the first ball is in the air, while the second
ball is ϵ-transitioning.

Due to the identifications, there is only one 0-cube, which models the state in which both
balls are ϵ-transitioning; its inv, flow and exit conditions can be inferred from the ones given.

We can extend the tensor product of HDTA to HDHA:

U. Fahrenberg 03:13

inv : x = 0, v ≤ 0, r ≤ ϵ

flow : ẋ = 0, v̇ = 0, ṙ = 1
exit : r′ = 0, v′ = −cv

inv : x ≥ 0
flow : ẋ = v, v̇ = −g, ṙ = 0
exit : r′ = 0

Figure 11 HDHA for a bouncing ball.

▶ Definition 21. Let Ai = (Li, λi, initi, invi, flowi, exiti), for i = 1, 2, be HDHA. The tensor
product of A1 and A2 is A1 ⊗A2 = (L, λ, inv, flow, exit) given as follows:

Ln =
⊔

p+q=n

L1
p × L2

q δν
i (l1, l2) =

{
(δν

i l1, l2) if i ≤ dim l1

(l1, δν
i−dim l1 l2) if i > dim l1

λ(l1, l2) = λ(l1) ⊔ λ(l2)
init(l1, l2) = init(l1) ∧ init(l2) inv(l1, l2) = inv(l1) ∧ inv(l2)
flow(l1, l2) = flow(l1) ∧ flow(l2) exit(l1, l2) = exit(l1) ∧ exit(l2)

▶ Example 22. Figure 11 shows the HDHA for a bouncing ball, with one 1-cube in which the ball
is in the air and one 0-cube for its ϵ-regularized transition from falling to raising. Denoting the
model as A(x, v, r), we can now construct models for arbitrarily many independently bouncing
balls as

k⊗
i=1

A(xi, vi, ri) ;

note that for k = 2 we obtain the HDHA from Figure 10. We emphasize that such a simple
construction for systems of bounccing balls is not available in the standard interleaving formalisms
for hybrid automata [3].

9 Conclusion and Further Work

We have seen that our new formalism of higher-dimensional timed automata (HDTA) is useful
for modeling interesting properties of non-interleaving real-time systems, and that reachability
for HDTA is PSPACE-complete, but can be decided using zone-based algorithms.

We have also shown how tensor product of HDTA can be used for parallel composition,
and that HDTA can easily be generalized to higher-dimensional hybrid automata. We believe
that altogether, this defines a powerful modeling formalism for non-interleaving cyber-physical
systems.

We have argued that in a non-interleaving real-time setting, events should have a time
duration. Note that this differs from [15, 18, 17], where, going back to [7], processes are partial
orders of events which are fired punctually. Chatain and Jard in [18] notice that “[t]ime and
causality [do] not necessarily blend well in [...] Petri nets” and propose to (locally) let time run
backwards to get nicer semantics. We should like to argue that our proposal of letting events
have duration appears more natural.

We have not paid any attention to categorical notions or results here. Higher-dimensional
automata have a natural categorical semantics [24], and also for timed automata, works on
categorical semantics are available [26, 45, 21], so this should be a natural extension. We would
have liked the semantics of HDTA to be precubical in some sense, but this does not seem easy.
A coalgebraic formulation of higher-dimensional automata would help here, but also this is not
available.

LITES

03:14 Higher-Dimensional Timed and Hybrid Automata

We have mentioned that techniques from geometry and (directed) topology are used to analyze
higher-dimensional automata. We have not used any such techniques here, but it appears only
natural to try to extend them to work for HDTA. A starting point could be the timed higher-
dimensional automata of Goubault’s [35], which are essentially connected complexes of singular
cubes in a locally compact Hausdorff space. We believe that HDTA can be given semantics as
sets of such Goubault automata.

Finally, we should mention that this paper is part of a long-term effort to develop useful theory
and tools for the analysis of distributed hybrid systems. Such systems consist of cyber-physical
components which are distributed in the sense that no central clock synchronization mechanism
is available, and the current state-of-the-art in distributed and hybrid systems analysis does not
allow for the modeling and analysis of such systems. We believe that through convergence and
interaction of methods and tools from concurrency theory, hybrid systems, control theory, and
distributed systems, significant advances can be obtained in this area.

References
1 Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen,

and Jiří Srba. Reactive Systems. Cambridge
University Press, 2007.

2 Luca Aceto and François Laroussinie. Is your
model checker on time? On the complexity of
model checking for timed modal logics. Journal
of Logic and Algebraic Methods in Programming,
52-53:7–51, 2002.

3 Rajeev Alur, Costas Courcoubetis, Nicolas
Halbwachs, Thomas A. Henzinger, Pei-Hsin Ho,
Xavier Nicollin, Alfredo Olivero, Joseph Sifakis,
and Sergio Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

4 Rajeev Alur and David L. Dill. Automata for
modeling real-time systems. In Mike Paterson,
editor, ICALP, volume 443 of Lecture Notes in
Computer Science, pages 322–335. Springer, 1990.

5 Rajeev Alur and David L. Dill. A theory of
timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

6 Youssef Arbach, David Karcher, Kirstin Peters,
and Uwe Nestmann. Dynamic causality in
event structures. In Susanne Graf and Mahesh
Viswanathan, editors, FORTE, volume 9039 of
Lecture Notes in Computer Science, pages 83–97.
Springer, 2015.

7 Tuomas Aura and Johan Lilius. Time processes
for time Petri-nets. In Pierre Azéma and
Gianfranco Balbo, editors, ICATPN, volume 1248
of Lecture Notes in Computer Science, pages 136–
155. Springer, 1997.

8 Marek A. Bednarczyk. Categories of asynchronous
systems. PhD thesis, University of Sussex, UK,
1987.

9 Gerd Behrmann, Alexandre David, and
Kim Guldstrand Larsen. A tutorial on uppaal.
In Marco Bernardo and Flavio Corradini, editors,
SFM-RT, volume 3185 of Lecture Notes in
Computer Science, pages 200–236. Springer, 2004.

10 Johan Bengtsson and Wang Yi. Timed automata:
Semantics, algorithms and tools. In Lectures
on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 87–124.
Springer, 2003.

11 Béatrice Bérard, Antoine Petit, Volker Diekert,
and Paul Gastin. Characterization of the
expressive power of silent transitions in timed
automata. Fundamenta Informaticae, 36(2-
3):145–182, 1998.

12 Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen,
Nicolas Markey, Joël Ouaknine, and James
Worrell. Model checking real-time systems. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem, editors, Handbook of
Model Checking., pages 1001–1046. Springer, 2018.

13 Marius Bozga, Conrado Daws, Oded Maler,
Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. Kronos: A model-checking tool for real-
time systems. In Alan J. Hu and Moshe Y. Vardi,
editors, CAV, volume 1427 of Lecture Notes in
Computer Science, pages 546–550. Springer, 1998.

14 Luca Cardelli. Real time agents. In Mogens Nielsen
and Erik Meineche Schmidt, editors, ICALP,
volume 140 of Lecture Notes in Computer Science,
pages 94–106. Springer, 1982.

15 Franck Cassez, Thomas Chatain, and Claude
Jard. Symbolic unfoldings for networks of timed
automata. In Susanne Graf and Wenhui Zhang,
editors, ATVA, volume 4218 of Lecture Notes in
Computer Science, pages 307–321. Springer, 2006.

16 Giovanni Casu and G. Michele Pinna. Petri nets
and dynamic causality for service-oriented
computations. In Ahmed Seffah, Birgit
Penzenstadler, Carina Alves, and Xin Peng,
editors, SAC, pages 1326–1333. ACM, 2017.

17 Thomas Chatain and Claude Jard. Complete finite
prefixes of symbolic unfoldings of safe time Petri
nets. In Susanna Donatelli and P. S. Thiagarajan,
editors, ICATPN, volume 4024 of Lecture Notes in
Computer Science, pages 125–145. Springer, 2006.

18 Thomas Chatain and Claude Jard. Back in time
Petri nets. In Víctor A. Braberman and Laurent
Fribourg, editors, FORMATS, volume 8053 of
Lecture Notes in Computer Science, pages 91–105.
Springer, 2013.

19 Alexandre David, Kim G. Larsen, Axel Legay,
Ulrik Nyman, Louis-Marie Traonouez, and
Andrzej Wasowski. Real-time specifications.

U. Fahrenberg 03:15

Int. J. Software Tools for Technology Transfer,
17(1):17–45, 2015.

20 Jérémy Dubut. Trees in partial higher dimensional
automata. In Mikołaj Bojańczyk and Alex
Simpson, editors, FOSSACS, volume 11425 of
Lecture Notes in Computer Science, pages 224–
241. Springer, 2019.

21 Jérémy Dubut, Ichiro Hasuo, Shin-ya Katsumata,
and David Sprunger. Quantitative bisimulations
using coreflections and open morphisms. CoRR,
abs/1809.09278, 2018.

22 Javier Esparza. A false history of true concurrency:
From Petri to tools (invited talk). In Jaco van de
Pol and Michael Weber, editors, SPIN, volume
6349 of Lecture Notes in Computer Science, pages
180–186. Springer, 2010.

23 Javier Esparza and Keijo Heljanko. Unfoldings
– A Partial-Order Approach to Model Checking.
Monographs Theor. Comput. Sci. Springer, 2008.

24 Uli Fahrenberg. A category of higher-dimensional
automata. In Vladimiro Sassone, editor, FoSSaCS,
volume 3441 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2005.

25 Uli Fahrenberg. Higher-Dimensional Automata
from a Topological Viewpoint. PhD thesis, Aalborg
University, Denmark, 2005.

26 Uli Fahrenberg. How to pull back open maps along
semantics functors. In Jochen Pfalzgraf, editor,
ACCAT, 2008.

27 Uli Fahrenberg. Higher-dimensional timed
automata. In Alessandro Abate, Antoine Girard,
and Maurice Heemels, editors, ADHS, volume 51
of IFAC-PapersOnLine, pages 109–114. Elsevier,
2018.

28 Uli Fahrenberg, Christian Johansen, Georg Struth,
and Krzysztof Ziemiański. Languages of higher-
dimensional automata. Mathematical Structures
in Computer Science, pages 1–39, 2021.

29 Uli Fahrenberg and Axel Legay. Partial higher-
dimensional automata. In Lawrence S. Moss and
Pawel Sobocinski, editors, CALCO, volume 35 of
LIPIcs, pages 101–115, 2015.

30 Lisbeth Fajstrup, Eric Goubault, Emmanuel
Haucourt, Samuel Mimram, and Martin Raussen.
Directed Algebraic Topology and Concurrency.
Springer, 2016.

31 Lisbeth Fajstrup, Martin Raussen, and Éric
Goubault. Algebraic topology and concurrency.
Theoretical Computer Science, 357(1-3):241–278,
2006.

32 Hans Fleischhack and Christian Stehno.
Computing a finite prefix of a time Petri
net. In Javier Esparza and Charles Lakos,
editors, ICATPN, volume 2360 of Lecture Notes
in Computer Science, pages 163–181. Springer,
2002.

33 Patrice Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems, volume 1032
of Lecture Notes in Computer Science. Springer,
1996.

34 Ursula Goltz and Wolfgang Reisig. The non-
sequential behavior of Petri nets. Information and
Control, 57(2/3):125–147, 1983.

35 Eric Goubault. Durations for truly-concurrent
transitions. In Hanne Riis Nielson, editor,

ESOP, volume 1058 of Lecture Notes in Computer
Science, pages 173–187. Springer, 1996.

36 Eric Goubault. Labelled cubical sets and
asynchronous transition systems: an adjunction.
In Preliminary Proceedings CMCIM’02, 2002.

37 Marco Grandis. Directed algebraic topology:
models of non-reversible worlds. New
mathematical monographs. Cambridge University
Press, 2009.

38 Hans-Michael Hanisch. Analysis of
place/transition nets with timed arcs and
its application to batch process control. In
Marco Ajmone Marsan, editor, ATPN, volume
691 of Lecture Notes in Computer Science, pages
282–299. Springer, 1993.

39 Henri Hansen, Shang-Wei Lin, Yang Liu,
Truong Khanh Nguyen, and Jun Sun. Partial order
reduction for timed automata with abstractions.
In Armin Biere and Roderick Bloem, editors,
CAV, volume 8559 of Lecture Notes in Computer
Science, pages 391–406. Springer, 2014.

40 Karl Henrik Johansson, Magnus Egerstedt,
John Lygeros, and Shankar Sastry. On the
regularization of Zeno hybrid automata. Systems
& Control Letters, 38(3):141–150, 1999.

41 Kim G. Larsen, Uli Fahrenberg, and Axel Legay.
From timed automata to stochastic hybrid games.
In Dependable Software Systems Engineering,
pages 60–103. IOS Press, 2017.

42 Kim G. Larsen, Paul Pettersson, and Wang Yi.
Uppaal in a nutshell. Int. J. Software Tools for
Technology Transfer, 1(1-2):134–152, 1997.

43 Philip M. Merlin and David J. Farber.
Recoverability of communication protocols–
implications of a theoretical study. IEEE
Transactions on Communications, 24(9):1036–
1043, 1976.

44 Robin Milner. Communication and Concurrency.
Prentice Hall, 1989.

45 Mogens Nielsen and Thomas Hune. Bisimulation
and open maps for timed transition systems.
Fundamenta Informaticae, 38(1-2):61–77, 1999.

46 Mogens Nielsen, Gordon D. Plotkin, and Glynn
Winskel. Petri nets, event structures and domains,
part I. Theoretical Computer Science, 13:85–108,
1981.

47 Carl A. Petri. Kommunikation mit Automaten.
Bonn: Institut für Instrumentelle Mathematik,
Schriften des IIM Nr. 2, 1962.

48 Vaughan R. Pratt. Modeling concurrency with
geometry. In David S. Wise, editor, POPL, pages
311–322. ACM Press, 1991.

49 Vaughan R. Pratt. Higher dimensional automata
revisited. Mathematical Structures in Computer
Science, 10(4):525–548, 2000.

50 Mike W. Shields. Concurrent machines. The
Computer Journal, 28(5):449–465, 1985.

51 Joseph Sifakis. Use of Petri nets for performance
evaluation. In Measuring, Modelling and
Evaluating Computer Systems, pages 75–93.
North-Holland, 1977.

52 Joseph Sifakis and Sergio Yovine. Compositional
specification of timed systems. In Claude Puech
and Rüdiger Reischuk, editors, STACS, volume
1046 of Lecture Notes in Computer Science, pages
347–359. Springer, 1996.

LITES

03:16 Higher-Dimensional Timed and Hybrid Automata

53 Jiří Srba. Comparing the expressiveness of
timed automata and timed extensions of Petri
nets. In Franck Cassez and Claude Jard, editors,
FORMATS, volume 5215 of Lecture Notes in
Computer Science, pages 15–32. Springer, 2008.

54 Rob J. van Glabbeek. Bisimulations for higher
dimensional automata. Email message, June 1991.

55 Rob J. van Glabbeek. On the expressiveness
of higher dimensional automata. Theoretical
Computer Science, 356(3):265–290, 2006.

56 Rob J. van Glabbeek. Erratum to “On the
expressiveness of higher dimensional automata”.
Theoretical Computer Science, 368(1-2):168–194,
2006.

57 Rob J. van Glabbeek and Gordon D. Plotkin.
Configuration structures. In LICS, pages 199–209.
IEEE Computer Society, 1995.

58 Rob J. van Glabbeek and Gordon D. Plotkin.
Configuration structures, event structures and
Petri nets. Theoretical Computer Science,
410(41):4111–4159, 2009.

59 Farn Wang, Aloysius K. Mok, and E. Allen
Emerson. Symbolic model checking for distributed
real-time systems. In Jim Woodcock and
Peter Gorm Larsen, editors, FME, volume 670 of
Lecture Notes in Computer Science, pages 632–
651. Springer, 1993.

60 Glynn Winskel and Mogens Nielsen. Models for
concurrency. In Handbook of Logic in Computer
Science, volume 4. Clarendon Press, Oxford, 1995.

	1 Introduction
	2 Preliminaries
	2.1 Higher-Dimensional Automata
	2.2 Timed Automata

	3 Higher-Dimensional Timed Automata
	4 One-Dimensional Timed Automata
	5 Reachability for HDTA is PSPACE-Complete
	6 Zone-Based Reachability
	7 Parallel Composition of HDTA
	8 Higher-Dimensional Hybrid Automata
	9 Conclusion and Further Work

