V&V of Optimizationbased Control Systems

Developments and Objectives of the ESA VV4RTOS Project

Pedro Lourenço

Head of Guidance & Control Section

GNC Division

Flight Segment and Robotics BU

 $\ensuremath{\textcircled{C}}$ GMV Property – 13/12/2022 - All rights reserved

Contents

Introduction	Technical Approach	On-going and future work
The team	Objectives	Solver implementation
The context	Verification & Validation	V&V of G&C
The project	Optimization Software	

The team

A global high technology group

Flight Segment and Robotics

Specialized Team in Portugal:

- Guidance Navigation and Control Algorithms
- Integrated GNC+Avionics System Architecture & Design
- ATB/AIV Qualification / V&V
- On Board Software OBSW
- Integrated Modular Avionics / Time Space Partition
- Robotics

VV4RTOS team

Organization

Funding and coordination

Technical Officer: Dr. Valentin Preda

Project Consortium

Project Manager: Dr. Pedro Lourenço GNC Engineers: Hugo Costa Pedro Cachim SW Engineers: Carolina Serra **Emanuel Ferreira**

Optimization Experts:

Dr. Gianluca Frison Jonathan Frey

Prof. Pierre-Loïc Garoche

Dr. Arash Sadeghzadeh

ENA

RÉPUBLIQUE FRANÇAISE

Liberté Égalité

esa

- Project coordination
- V&V gaps
- V&V, FES, G&C implementation

-

RÉPUBLIQUE FRANÇAISE

- Support V&V gaps
- V&V execution
 - SIL/PIL
- Formal V&V expertise

ENA

- Optimization theory
- Optimization software

Space Robotics

Launchers

Satellites

The context

Interplanetary missions

Rendezvous & Docking

OSAM

Active Debris Removal

A conservative Industry

Controllers flying over the years

Current and future trends

New tools being considered

New concepts and challenges in space

New space

• Democratization of space, commercial access to launches, with micro- and nano-satellites

New challenges

- Cost reduction
- Debris removal

Verification & Validation

Overview

Orbital Robotics

- Advanced control for capture & detumbling of debris
- Visual navigation & inspection in-orbit
- Robotic assembly of large and flexible structures
- Robotic in-orbit servicing & refueling

Simulation & Test Facilities

- Orbital dynamics simulation for RdV and FF
- Navigation sensors test
 GNC closed loop
- experiments • Contact dynamics (ADR,
- Contact dynamics (ADR, in-orbit assembly)
- Planetary robotics test campaigns

gnv

Hardware-in-the-loop

The future of the industry

Up-and-coming tools and technologies

- On-board Optimization
- Machine Learning
- Robust G&C
- Image Processing, SDR
- Autonomy

Challenges

- Computational cost of the algorithms
- Robustness and stability guarantees
- Efficient and representative V&V

Computational G&C

Mission Vehicle Management

The project

VV4RTOS

Verification and Validation of Real-Time Optimised Safety-Critical GNC SW Systems

VV4RTOS

Objectives

"The activity aims to define optimisation architectures, GNC and real-time optimisation algorithms, and verification & validation (V&V) processes that guarantee safe code execution under resource and timing constraints."

Verification & Validation

- Augment traditional GNC DDVV to explicitly address iterative embedded optimization algorithms
- Guarantee safe, reliable, repeatable, and accurate execution of the OBSW

Optimization-based G&C

- Consolidate process for fast prototyping and qualification of G&C SW
- Theoretical foundations for optimization problem posing, discretization, convexification, and transcription into online-solvable programs.
- High-to-low level translation of mission requirements and interface with certified embedded solvers

Technical approach

VV4RTOS

Verification and Validation of Real-Time Optimised Safety-Critical GNC SW Systems

Technical approach

The "old" ways

Objectives

Technical approach

Optimization-based G&C

Enhanced V&V

© GMV Property - 13/12/2022 - All rights reserved

Technical approach

Objectives

Mixed Formal and Testing Approach to the DDVV of optimisation-based G&C software

Technical approach

Verification & Validation

Optimization

Classification

Optimization problems

Problem type:

- QP, QCQP, SOCP
- Convexity
- (mixed integer)

Problem structure:

- Dense, Sparse
- Optimal control structure

Problem properties:

- Numerical properties (e.g., conditioning)
- Sampling time
- Availability of initial guess

Optimization solvers

Solver type:

- First order
- Active set
- Interior Point

Solver properties:

- Speed, accuracy, robustness
- Average vs worst case solution time
- Single/double precision floating/fix point
- Memory (amount, static/dynamic)
- Warm start capabilities
- Code complexity
- Ease of V&V (e.g., theoretical bounds)

First Order Methods

- ✓ Simple and concise code
- Many but cheap iterations
- □ Slow convergence to high accuracy
- Sensitive to scaling
- ✓ Need low floating/fixed point accuracy
- ✓ Existence of practically relevant convergence bounds
- ✓ "Easy" to formally V&V

Y. Yu, P. Elango, U. Topcu, and B. Açıkmeşe, "Proportional-Integral Projected Gradient Method for Conic Optimization," Automatica, vol. 142, p. 110359, Aug. 2022, doi: 10.1016/j.automatica.2022.110359.

Interior Point Methods

- □ Complex code (e.g., factorizations)
- Few but expensive iterations
- ✓ Fast convergence to high accuracy
- ✓ Unsensitive to scaling (Newton)
- Need high FP accuracy (ill-condition)
- No practically relevant convergence bounds for state-of-the-art methods
- Difficult to formally V&V

https://github.com/giaf/hpipm

G. Frison, J. Frey, F. Messerer, A. Zanelli, and M. Diehl, "Introducing the quadratically-constrained quadratic programming framework in HPIPM," in 2022 European Control Conference (ECC), London, United Kingdom, Jul. 2022, pp. 447–453. doi: 10.23919/ECC55457.2022.9838499.

НРІРМ

HPIPM Analysis

Language	files	blank	comment	code
С	325	20784	25466	130221
C/C++ Header	126	2292	6658	5983
MATLAB	69	1409	1874	4796
Python	22	584	1095	1554
make	20	184	788	756
Mathematica		25		533
CMake		44	157	267
TeX	2	56	81	244
Julia		37	16	183
Markdown		34		179
YAML				166
Bourne Shell		32	45	108
Bourne Again Shell			27	2
SUM:	591	25496	36207	144992

BLASFEO

Language	files	blank	comment	code
Assembly	148	135341	156748	331162
c Í	275	44874	24305	202707
make	35	1468	1435	4539
C/C++ Header	49	1117	3176	4027
CMake	33	403	381	1840
JSON	31	30		1806
MATLAB		468	62	1132
Python	2	149	42	343
Markdown		88		289
Bourne Shell			30	270
TeX	2	88	11	168
YAML		12		145
SUM:	593	184045	186190	548428

First Order Methods

- ✓ Simple and concise code
- Many but cheap iterations
- □ Slow convergence to high accuracy
- Sensitive to scaling
- ✓ Need low floating/fixed point accuracy
- Existence of practically relevant convergence bounds
- ✓ "Easy" to formally V&V

Y. Yu, P. Elango, U. Topcu, and B. Açıkmeşe, "Proportional-Integral Projected Gradient Method for Conic Optimization," Automatica, vol. 142, p. 110359, Aug. 2022, doi: 10.1016/j.automatica.2022.110359.

Interior Point Methods

- □ Complex code (e.g., factorizations)
- Few but expensive iterations
- ✓ Fast convergence to high accuracy
- ✓ Unsensitive to scaling (Newton)
- □ Need high FP accuracy (ill-condition)
- No practically relevant convergence bounds for state-of-the-art methods
- □ Difficult to formally V&V

https://github.com/giaf/hpipm

G. Frison, J. Frey, F. Messerer, A. Zanelli, and M. Diehl, "Introducing the quadratically-constrained quadratic programming framework in HPIPM," in 2022 European Control Conference (ECC), London, United Kingdom, Jul. 2022, pp. 447–453. doi: 10.23919/ECC55457.2022.9838499.

General conic optimization problem

Conic optimization problem is the minimization of a different iable convex objective function f subject to conic constraints:

$$\min_{z,y} \quad f(z) \tag{1}$$
s.t. $Hz - y = g, \quad y \in \mathbb{K}, \quad z \in \mathbb{D}$

where $z \in \mathbb{R}^n, y \in \mathbb{R}^m$ are the decision variables, $f : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable and convex objective function, $\mathbb{K} \subset \mathbb{R}^m$ is a closed convex cone and $\mathbb{D} \subset \mathbb{R}^n$ is a closed convex set, $H \in \mathbb{R}^{m \times n}$ and $g \in \mathbb{R}^m$ are constraint parameters.

PIPG convergence result - essentials

Primal dual gap (optimality)

- Convergence with an order of $O(\frac{1}{k^2})$ to the optimum, in a primal-dual sense
- ▶ $L(\bar{z}, w^{\star}) L(z^{\star}, \bar{w})$ is known as the *primal-dual gap* evaluated at (\bar{z}, \bar{w})

Thus, (6) provides an upper bound for the primal dual gap of the iterate pair (\bar{z}^k, \bar{w}^k) . Feasibility

• constraint violation is brought to zero with an order of $O(\frac{1}{k^3})$

Convergence results are shown for the \tilde{z}^k and (\bar{z}^k, \bar{w}^k) , respectively.

convex combinations of all iterates up to index k with strictly increasing convex combination factors.

Ongoing development

Proportional Integral Projected Gradient

Implementation

Proportional Integral Projected Gradient

Analysis

gn.

Proportional Integral Projected Gradient

Optimal Control

$$\begin{array}{c} \frac{1}{2} \mathbf{s}^T \mathbf{M} \mathbf{s} + \mathbf{m}^T \mathbf{s} + \sum_{k=0}^{N-1} \left(\frac{1}{2} \mathbf{x}_{k+1}^T \mathbf{Q}_{k+1} \mathbf{x}_{k+1} + \frac{1}{2} \mathbf{u}_k^T \mathbf{R}_k \mathbf{u}_k \right. \\ \underset{\mathbf{x}_1, \dots, \mathbf{x}_N}{\underset{\mathbf{u}_0, \dots, \mathbf{u}_{N-1}}{\text{ minimize }}} \left. + \mathbf{x}_{k+1}^T \mathbf{N}_k \mathbf{u}_k + \mathbf{q}_{k+1}^T \mathbf{x}_{k+1} + \mathbf{r}_k^T \mathbf{u}_k \right)$$

 \mathbf{s}

subject to

 \mathbf{H}_{l}^{0}

© GMV Property - 13/12/2022 - All rights reserved

gw

© GMV Property - 13/12/2022 - All rights reserved

Page. 44

gn⁄

1200

1200

Where to now?

VV4RTOS

Thank you

Pedro Lourenço, on behalf of the VV4RTOS team palourenco@gmv.com

© GMV Property – 13/12/2022 - All rights reserved