### **V&V of Optimizationbased Control Systems**

Developments and Objectives of the ESA VV4RTOS Project





#### **Pedro Lourenço**

Head of Guidance & Control Section

GNC Division

Flight Segment and Robotics BU

© GMV Property – 13/12/2022 - All rights reserved



### **Contents**



### **The team**

### **A global high technology group**



### **Flight Segment and Robotics**

#### **Specialized Team in Portugal:**

- Guidance Navigation and Control Algorithms
- Integrated GNC+Avionics System Architecture & Design
- ATB/AIV Qualification / V&V
- On Board Software OBSW
- Integrated Modular Avionics / Time Space Partition
- Robotics



### **VV4RTOS team**

### **Organization**

#### **Funding and coordination**

*Technical Officer:* Dr. Valentin Preda

#### **Project Consortium**

*Project Manager:* Dr. Pedro Lourenço *GNC Engineers:* Hugo Costa Pedro Cachim *SW Engineers:* Carolina Serra Emanuel Ferreira



V&V experts: Prof. Pierre-Loïc Garoche

Optimization Dr. Gianluca Frison Experts: Jonathan Frey

Dr. Arash Sadeghzadeh

System experts: Dr. Anthea Comellini



ENA

**IZ A**<br>RÉPUBLIQUE<br>FRANÇAISE

**esa** 

### **Responsibilities**



**SALE** 

**RÉPUBLIQUE**<br>FRANÇAISE

- Project coordination
- V&V gaps
- V&V, FES, G&C implementation



- Support V&V gaps
- V&V execution
	- SIL/PIL
- Formal V&V expertise
- Optimization theory
- Optimization software



### **The context**

Launchers

**Satellites** 

Interplanetary missions

Space Robotics

Rendezvous & Docking

**OSAM** 

Active Debris Removal

### **A conservative Industry**

#### **Controllers flying over the years**



### **Current and future trends**

#### **New tools being considered**



### **New concepts and challenges in space**

#### **New space**

• Democratization of space, commercial access to launches, with micro- and nano-satellites

#### **New challenges**

- Cost reduction
- Debris removal



### **Verification & Validation**

### **Overview**



#### **Orbital Robotics**

- Advanced control for capture & detumbling of debris
- Visual navigation & inspection in-orbit
- Robotic assembly of large and flexible structures
- Robotic in-orbit  $\bullet$ servicing & refueling



#### Simulation & **Test Facilities**

- Orbital dynamics  $\bullet$ simulation for RdV and **FF**
- $\bullet$ Navigation sensors test  $\cdot$ GNC closed loop
- experiments
- Contact dynamics (ADR,  $\cdot$ in-orbit assembly)
- · Planetary robotics test campaigns





### **Hardware-in-the-loop**



### **The future of the industry**

### **Up-and-coming tools and technologies**

- **On-board Optimization**
- **Machine Learning**
- **Robust G&C**
- **Image Processing, SDR**
- **Autonomy**

#### **Challenges**

- Computational cost of the algorithms
- Robustness and stability guarantees
- Efficient and representative V&V

**Computational G&C**



#### **Mission Vehicle Management**

### **The project**

### **VV4RTOS**

Verification and Validation of Real-Time Optimised Safety-Critical GNC SW Systems

### **VV4RTOS**

### **Objectives**

*"The activity aims to define optimisation architectures, GNC and real-time optimisation algorithms, and verification & validation (V&V) processes that guarantee safe code execution under resource and timing constraints."*

#### **Verification & Validation**

- Augment traditional GNC DDVV to explicitly address iterative embedded optimization algorithms
- Guarantee safe, reliable, repeatable, and accurate execution of the OBSW

#### **Optimization-based G&C**

- Consolidate process for fast prototyping and qualification of G&C SW
- Theoretical foundations for optimization problem posing, discretization, convexification, and transcription into online-solvable programs.
- High-to-low level translation of mission requirements and interface with certified embedded solvers

### **Technical approach**

### **VV4RTOS**

Verification and Validation of Real-Time Optimised Safety-Critical GNC SW Systems

### **Technical approach**

**The "old" ways**



## **Objectives**

**Technical approach**

#### **Optimization-based G&C Enhanced V&V**





### **Technical approach**

#### **Objectives**

**Mixed Formal and Testing Approach to the DDVV of optimisation-based G&C software**



### **Technical approach**

### **Verification & Validation**



### **Optimization**

### **Classification**

### **Optimization problems**

#### **Problem type:**

- QP, QCQP, SOCP
- Convexity
- (mixed integer)

#### **Problem structure:**

- Dense, Sparse
- Optimal control structure

#### **Problem properties:**

- Numerical properties (e.g., conditioning)
- Sampling time
- Availability of initial guess

### **Optimization solvers**

#### **Solver type:**

- First order
- Active set
- Interior Point

#### **Solver properties:**

- Speed, accuracy, robustness
- Average vs worst case solution time
- Single/double precision floating/fix point
- Memory (amount, static/dynamic)
- Warm start capabilities
- Code complexity
- Ease of V&V (e.g., theoretical bounds)

#### **First Order Methods**

- Simple and concise code
- Many but cheap iterations
- Slow convergence to high accuracy
- ❑ Sensitive to scaling
- $\checkmark$  Need low floating/fixed point accuracy
- $\checkmark$  Existence of practically relevant convergence bounds
- ✓ "Easy" to formally V&V

Y. Yu, P. Elango, U. Topcu, and B. Açıkmeşe, "Proportional-Integral Projected Gradient Method for Conic Optimization," Automatica, vol. 142, p. 110359, Aug. 2022, doi: 10.1016/j.automatica.2022.110359.

### **Interior Point Methods**

- ❑ Complex code (e.g., factorizations)
- Few but expensive iterations
- $\checkmark$  Fast convergence to high accuracy
- ✓ Unsensitive to scaling (Newton)
- ❑ Need high FP accuracy (ill-condition)
- ❑ No practically relevant convergence bounds for state-of-the-art methods
- ❑ Difficult to formally V&V

#### **https://github.com/giaf/hpipm**



G. Frison, J. Frey, F. Messerer, A. Zanelli, and M. Diehl, "Introducing the quadratically-constrained quadratic programming framework in HPIPM," in 2022 European Control Conference (ECC), London, United Kingdom, Jul. 2022, pp. 447– 453. doi: 10.23919/ECC55457.2022.9838499.

### **HPIPM Analysis**

### **HPIPM**



### **BLASFEO**



#### **First Order Methods**

- Simple and concise code
- Many but cheap iterations
- ❑ Slow convergence to high accuracy
- ❑ Sensitive to scaling
- Need low floating/fixed point accuracy
- Existence of practically relevant convergence bounds
- ✓ "Easy" to formally V&V

Y. Yu, P. Elango, U. Topcu, and B. Açıkmeşe, "Proportional-Integral Projected Gradient Method for Conic Optimization," Automatica, vol. 142, p. 110359, Aug. 2022, doi: 10.1016/j.automatica.2022.110359.

### **Interior Point Methods**

- ❑ Complex code (e.g., factorizations)
- Few but expensive iterations
- $\checkmark$  Fast convergence to high accuracy
- $\checkmark$  Unsensitive to scaling (Newton)
- ❑ Need high FP accuracy (ill-condition)
- ❑ No practically relevant convergence bounds for state-of-the-art methods
- ❑ Difficult to formally V&V

#### **https://github.com/giaf/hpipm**



G. Frison, J. Frey, F. Messerer, A. Zanelli, and M. Diehl, "Introducing the quadratically-constrained quadratic programming framework in HPIPM," in 2022 European Control Conference (ECC), London, United Kingdom, Jul. 2022, pp. 447– 453. doi: 10.23919/ECC55457.2022.9838499.



#### **General conic optimization problem**

Conic optimization problem is the minimization of a different able convex objective function  $f$ subject to conic constraints:

$$
\min_{z,y} f(z)
$$
  
s.t.  $Hz - y = g, y \in \mathbb{K}, z \in \mathbb{D}$  (1)

where  $z \in \mathbb{R}^n, y \in \mathbb{R}^m$  are the decision variablse,  $f : \mathbb{R}^n \to \mathbb{R}$  is a continuously differentiable and convex objective function,  $\mathbb{K} \subset \mathbb{R}^m$  is a closed convex cone and  $\mathbb{D} \subset \mathbb{R}^n$  is a closed convex set,  $H \in \mathbb{R}^{m \times n}$  and  $g \in \mathbb{R}^m$  are constraint parameters.

#### **PIPG convergence result - essentials**

Primal dual gap (optimality)

- ▶ Convergence with an order of  $O(\frac{1}{k^2})$  to the optimum, in a primal-dual sense
- $\blacktriangleright$   $L(\bar{z}, w^*) L(z^*, \bar{w})$  is known as the *primal-dual gap* evaluated at  $(\bar{z}, \bar{w})$

Thus, (6) provides an upper bound for the primal dual gap of the iterate pair  $(\bar{z}^k, \bar{w}^k)$ . Feasibility

► constraint violation is brought to zero with an order of  $O(\frac{1}{k^3})$ 

Convergence results are shown for the  $\tilde{z}^k$  and  $(\bar{z}^k, \bar{w}^k)$ , respectively.

 $\blacktriangleright$  convex combinations of all iterates up to index  $k$  with strictly increasing convex combination factors.

### **Ongoing development**

### **Proportional Integral Projected Gradient**

#### **Implementation**



### **Proportional Integral Projected Gradient**

#### **Analysis**





### **Proportional Integral Projected Gradient**

### **Optimal Control**

$$
\frac{1}{2}\mathbf{s}^T \mathbf{M}\mathbf{s} + \mathbf{m}^T \mathbf{s} + \sum_{k=0}^{N-1} \left( \frac{1}{2} \mathbf{x}_{k+1}^T \mathbf{Q}_{k+1} \mathbf{x}_{k+1} + \frac{1}{2} \mathbf{u}_k^T \mathbf{R}_k \mathbf{u}_k \right)
$$
\nminimize\n
$$
\mathbf{x}_1, \dots, \mathbf{x}_N + \mathbf{x}_{k+1}^T \mathbf{N}_k \mathbf{u}_k + \mathbf{q}_{k+1}^T \mathbf{x}_{k+1} + \mathbf{r}_k^T \mathbf{u}_k
$$

mini

 $\mathbf{u}_0, \ldots$ 

 $\bf s$ 

subject to

$$
\Phi_k \mathbf{x}_k + \mathbf{\Gamma}_k \mathbf{u}_k + \mathbf{c}_k = \mathbf{x}_{k+1}, \quad \text{(Dynamics)}, \quad k = 0, \dots, N-1,
$$
\n
$$
\mathbf{x}_{k+1} \in \mathbb{X}_{k+1}, \quad \text{(State)}, \quad k = 0, \dots, N-1,
$$
\n
$$
\mathbf{u}_k \in \mathbb{U}_k, \quad \text{(Inputs)}, \quad k = 0, \dots, N-1,
$$
\n
$$
\mathbf{s} \in \mathbb{S}, \quad \text{(Slacks)},
$$
\n
$$
\mathbf{H}_k^{(0)} \mathbf{x}_k + \mathbf{H}_k^{(1)} \mathbf{x}_{k+1} + \mathbf{H}_k^{(u)} \mathbf{u}_k + \mathbf{H}_k^{(s)} \mathbf{s} - \mathbf{g}_k \in \mathbb{K}_k, \quad \text{(General)}, \quad k = 0, \dots, N-1
$$



© GMV Property – 13/12/2022 - All rights reserved Page. 43

 $gm$ 



© GMV Property - 13/12/2022 - All rights reserved Page. 44

 $g_{\mathcal{N}}$ 

1200

1200



#### **Where to now?**



### **VV4RTOS**













# **Thank you**

Pedro Lourenço, on behalf of the VV4RTOS team palourenco@gmv.com



© GMV Property – 13/12/2022 - All rights reserved