
1	Employed	by	KBR;	NASA	Ames	Research	Center,	CA,	USA	

2	NASA	Ames	Research	Center,	CA,	USA

Requirements elicitation,
analysis and verification using

FRET and CoCoSim

Andreas	Katis1,2	
FEANICSES	2022,	December	6,	Toulouse,	France	

1

What types of bugs are found in models and code?

in	models in	auto-generated	code
Johann	Schumann,	Matt	Knudsen,	Teme	Kahsai,	Noble	Nkwocha,	Katerina		
Goseva-Popstojanova,	Thomas	Kyanko,	"Report:	Survey	on	Model-Based	Software		
Engineering	and	Auto-Generated	Code”,	NASA/TM-2016-219443,	2016.	

2

What types of bugs are found in models and code?

in	models in	auto-generated	code
Johann	Schumann,	Matt	Knudsen,	Teme	Kahsai,	Noble	Nkwocha,	Katerina		
Goseva-Popstojanova,	Thomas	Kyanko,	"Report:	Survey	on	Model-Based	Software		
Engineering	and	Auto-Generated	Code”,	NASA/TM-2016-219443,	2016.	

3

language of developers forced to write reqs
Lockheed	Martin	Cyber-Physical	System	Challenge,	
component	FSM:	

• Exceeding	sensor	limits	shall	latch	an	autopilot	pullup	when	the	pilot	is	not	in	
control	(not	standby)	and	the	system	is	supported	without	failures	(not	apfail).	

• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	
in	control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	
system	is	supported	and	sensor	data	is	good.	

• The	autopilot	shall	change	states	from	NOMINAL	to	MANEUVER	when	the	sensor	
data	is	not	good.	

• The	autopilot	shall	change	states	from	NOMINAL	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	MANEUVER	to	STANDBY	when	the	pilot	is	
in	control	(standby)	and	sensor	data	is	good.	

• …

every	time	these	conditions	hold	or	only	when	they	become	true?		

are	these	requirements	consistent?	does	my	model/code	satisfy	them?
4

language formal analysis tools understand

5

Welcome to FRET
https://github.com/NASA-SW-VnV/fret

Team:	Andreas	Katis,	Anastasia	Mavridou,	Tom	Pressburger,	Johann	Schumann,	Khanh	Trinh	
Alumni:	David	Bushnell,	Tanja	DeJong,	Dimitra	Giannakopoulou,	George	Karamanolis,		

David	Kooi,	Julian	Rhein,	Nija	Shi 6

FRETish

captures + assists

stores + displays

explains

formalizes

diagnosesconnects + exports

7

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

✓ for model checking Simulink models with CoCoSim

✓ for model checking Lustre code with Kind2

✓ for runtime analysis of C programs with Copilot
8

FRET is rigorous and extensible
• semantic	templates	have	RTGIL	semantics.	FRET	generates	formulas	in	future-	(finite	and	infinite-trace)	

and	past-time	metric	temporal	logics.		A	verification	framework	within	FRET	ensures	correctness	of	
formalization	algorithms.	

• all	aspects	of	our	approach	are	compositional	–	based	on	requirement	fields.

Dimitra	Giannakopoulou,	Thomas	Pressburger,	Anastasia	Mavridou,	Johann	Schumann:	
“Automated	Formalization	of	Structured	Natural	Language”,	Information	and	Software	Technology,	2021

[)	
⌝	COND

COND

[)	
=>

COND	=>

[)	

[)	

RES immediately

[)	

never

[)	
⌝	RES

always

[)	
RES

eventually

[)	
RES

9

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics: FRETish

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

✓ for model checking Simulink models with CoCoSim

✓ for model checking Lustre code with Kind2

✓ for runtime analysis of C programs with Copilot
10

capturing requirements in FRETish
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if	altitude-hold_selected	the	altitude_hold_autopilot	shall	always	satisfy	maintain_altitude

in,	before,	after,	notin,	onlyIn,	onlyBefore,	onlyAfter;	when	omitted,	global

immediately,	next,	always,	never,	eventually,	until,	before,	for,	within,	after	

null,	regular

satisfaction

SCOPE

CONDITION

TIMING

RESPONSE

160	semantic	templates	/	template	keys!

condition component timing response
scope

11

Scopes

• (global)	The	system	shall	always	satisfy	count	>=	0	
• After	boot	mode	the	system	shall	immediately	satisfy	prompt_for_password	
• Only	after	arming	mode	shall	the	system	eventually	satisfy	fired	
• In	landing	mode	the	system	shall	eventually	satisfy	decrease_speed	
• When	not	in	initialization	mode	the	system	shall	always	satisfy	commands_accepted	
• Only	in	landing	mode	shall	the	system	eventually	satisfy	landing_gear_down	
• Before	energized	mode	the	system	shall	always	satisfy	energized_indicator_off	
• Only	before	energized	mode	shall	the	system	eventually	satisfy	manually_touchable

12

Scope	Intervals

13

Scopes (contd)

• While	mode	=	4	the	watch	shall	always	satisfy	alarm_icon_on	
• While	persisted(4,high_temperature)	the	monitor	shall	until	shutoff	
satisfy	alarm_on	

• Before	taxiing	&	receivedClearance	the	plane	shall	always	satisfy	!
takeoff	

• After	landed	&	powerOff	the	doors	shall	within	5	seconds	satisfy	
unlocked

14

Scope grammar

15

Conditions

• upon,	if,	when,	where;	unless	
• Boolean	expression	
• Trigger:	upon	the	Boolean	expression	becoming	true	from	being	false	
in	the	scope,	or	being	true	at	the	beginning	of	the	scope.

16

Condition grammar

17

Timings

• In	roll_hold	mode	RollAutopilot	shall	immediately	satisfy	if	(roll_angle<	6.0	&	roll_angle	>	
-6.0)	then	roll_hold_reference	=	0.0	

• 	When	currentOverload	the	circuitBreaker	shall,	at	the	next	timepoint,	satisfy	shutoff	
• 	In	landingMode	the	system	shall	eventually	satisfy	LandingGearLowered	
• 	The	autopilot	shall	always	satisfy	if	allGood	then	state	=	nominal	
• 	In	drivingMode	the	system	shall	never	satisfy	cellPhoneOn	&	!cellPhoneHandsFree	
• 	When	errorCondition,	the	system	shall,	for	4	ticks,	satisfy	alarmOn	
• 	In	landing	mode,	the	the	system	shall	within	2	ticks	satisfy	is_stable		
• 	When	input	=	1,	the	integrator	shall,	after	10		ticks,	satisfy	output	=	10	
• 	In	CountdownMode	the	system	shall,	until	Count	=	0,	satisfy	Count	>	0	
• The	system	shall,	before	TakeOff,	satisfy	CheckListTasksCompleted

18

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner: past, future linear temporal logic, Lustre

• Assists in writing requirements through requirement templates

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

✓ for model checking Simulink models with CoCoSim

✓ for model checking Lustre code with Kind2

✓ for runtime analysis of C programs with Copilot
19

Capturing, explaining and formalizing requirements

20

but	this is not what I mean…

21

getting to the right requirement
TAKE1: if altitude_hold_selected the altitude_hold_autopilot shall always
 satisfy maintain_altitude

TAKE2: the altitude_hold_autopilot shall always

 satisfy if altitude_hold_selected then maintain_altitude

TAKE3: when in cruising mode, the altitude_hold_autopilot shall always
 satisfy if altitude_hold_selected then maintain_altitude

22

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Assists in writing requirements through requirement templates

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

✓ for model checking Simulink models with CoCoSim

✓ for model checking Lustre code with Kind2

✓ for runtime analysis of C programs with Copilot
23

 Assistance: Requirement templates

• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	system	
is	supported	and	sensor	data	is	good.	

• The	autopilot	shall	change	states	from	NOMINAL	to	MANEUVER	when	the	sensor	
data	is	not	good.	

• The	autopilot	shall	change	states	from	NOMINAL	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	MANEUVER	to	STANDBY	when	the	pilot	is	in	
control	(standby)	and	sensor	data	is	good.

Lockheed	Martin	Cyber-Physical	System	Challenge,	component	FSM:

24

 Requirement templates
• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	in	

control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	system	
is	supported	and	sensor	data	is	good.	

• The	autopilot	shall	change	states	from	NOMINAL	to	MANEUVER	when	the	sensor	
data	is	not	good.	

• The	autopilot	shall	change	states	from	NOMINAL	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	MANEUVER	to	STANDBY	when	the	pilot	is	in	
control	(standby)	and	sensor	data	is	good.

Lockheed	Martin	Cyber-Physical	System	Challenge,	component	FSM:

25

 Requirement templates

26

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

✓ for model checking Simulink models with CoCoSim

✓ for model checking Lustre code with Kind2

✓ for runtime analysis of C programs with Copilot
27

Checking consistency
• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	in	

control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	system	
is	supported	and	sensor	data	is	good.

Lockheed	Martin	Cyber-Physical	System	Challenge,	component	FSM:

28

Checking consistency

• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	system	
is	supported	and	sensor	data	is	good.

Lockheed	Martin	Cyber-Physical	System	Challenge,	component	FSM:

Input	state:	TRANSITION

29

 Checking consistency

• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	system	
is	supported	and	sensor	data	is	good.

Lockheed	Martin	Cyber-Physical	System	Challenge,	component	FSM:

Input	state:	TRANSITION	
Condition	1:	pilot	is	in	control		
Condition	2:	system	is	supported	
	 					sensor	data	is	good	

30

 Checking consistency

• The	autopilot	shall	change	states	from	TRANSITION	to	STANDBY	when	the	pilot	is	in	
control	(standby).	

• The	autopilot	shall	change	states	from	TRANSITION	to	NOMINAL	when	the	system	
is	supported	and	sensor	data	is	good.

Lockheed	Martin	Cyber-Physical	System	Challenge,	component	FSM:

Input	state:	TRANSITION	
Condition	1:	pilot	is	in	control		
Condition	2:	system	is	supported	
	 					sensor	data	is	good	
Output	state	1:	STANDBY	
Output	state	2:	NOMINAL	

31

Giannakopoulou,	Dimitra,	Andreas	Katis,	Anastasia	Mavridou,	and	Thomas	Pressburger.	"Compositional	realizability	checking	within	FRET."	(2021).	

Mavridou,	Anastasia,	Andreas	Katis,	Dimitra	Giannakopoulou,	David	Kooi,	Thomas	Pressburger,	and	Michael	W.	Whalen.	"From	Partial	to	Global	Assume-
Guarantee	Contracts:	Compositional	Realizability	Analysis	in	FRET."	FM	2021

Checking Realizability

• Realizable	requirements:	A	system	exists	that	satisfies	the	
requirements	for	every	valid	environment	input	

• Unrealizable	requirements:	Diagnostic	analysis	
• Identify	minimal	sets	of	unrealizable	requirements	in	specification	
• Counterexamples	
• Simulation	of	conflicting	requirements	

• Compositional	Realizability	Checking

32

 Checking consistency

Anastasia	Mavridou,	Andreas	Katis,	Dimitra	Giannakopoulou,	David	Kooi,	Thomas	Pressburger,	Michael	W.	Whalen:	
From	Partial	to	Global	Assume-Guarantee	Contracts:	Compositional	Realizability	Analysis	in	FRET.	FM	2021. 33

FRET bridges the gap
• Captures requirements in a restricted natural language with

unambiguous semantics

• Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

• Assists in writing requirements through requirement templates

• Formalizes requirements in a compositional (hence maintainable
and extensible) manner

• Checks consistency of requirements and provides feedback

• Connects with analysis tools and exports verification code

✓ for model checking Simulink models with CoCoSim

✓ for model checking Lustre code with Kind2

✓ for runtime analysis of C programs with Copilot
34

Osborne,	Leon	F.,	Jeff	Brummond,	Robert	Hart,	Mohsen	Zarean,	and	Steven	M.	Conger.	Clarus:	Concept	of	operations.	No.	FHWA-JPO-05-072.	United	States.	
Federal	Highway	Administration,	2005.

FRET

CoCoSim

IKOS

35

CoCoSim: an open-source MATLAB plugin for

• Contract-based	Compositional	Verification	of	Simulink/Stateflow	Models	
• Simulink/Stateflow	translation	to	Verimag	Lustre	/	C	
• Work in progress: Link with requirements specification tools (FRET), Test Case

Generation

• Bourbouh, Hamza, Marie Farrell, Anastasia Mavridou, Irfan Sljivo, Guillaume Brat, Louise A. Dennis, and Michael Fisher. "Integrating formal verification and assurance: an inspection rover case study."
In NASA Formal Methods Symposium, pp. 53-71. Springer, Cham, 2021.

• Mavridou, Anastasia, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Pressburger, Mohammad Hejase, Pierre-Loic Garoche, and Johann Schumann. "The ten lockheed martin cyber-physical
challenges: formalized, analyzed, and explained." In 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 300-310. IEEE, 2020.

• Mavridou, Anastasia, Hamza Bourbouh, Pierre Loic Garoche, Dimitra Giannakopoulou, Thomas Pessburger, and Johann Schumann. "Bridging the gap between requirements and Simulink model
analysis." In Joint 26th International Conference on Requirements Engineering: Foundation for Software Quality Workshops, Doctoral Symposium, Live Studies Track, and Poster Track. 2020.

• Bourbouh, Hamza, Pierre-Loïc Garoche, Thomas Loquen, Éric Noulard, and Claire Pagetti. "CoCoSim, a code generation framework for control/command applications An overview of CoCoSim for multi-
periodic discrete Simulink models." In 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020). 2020.

• Bourbouh, Hamza, Guillaume Brat, and Pierre-Loïc Garoche. "CoCoSim: an automated analysis framework for Simulink/Stateflow." In Model Based Space Systems and Software Engineering-European
Space Agency Workshop (MBSE 2020). 2020.

36

CoCoSim Architecture

LustreC Kind	2

37

Verification

• Formal	verification:	Prove	that	a	system	always	conforms	to	our	
requirements	

• By	constructing	a	mathematical	proof!	
• Model	checking

38

Requirements are expressed using the
CoCoSim library.

39

40

41

Compositional Verification

	𝐼𝑛𝑝𝑢𝑡𝐴 = 9 , 𝑂𝑢𝑡𝑝𝑢𝑡𝐴 = 17, 𝑂𝑢𝑡𝑝𝑢𝑡𝐵 = 31, 𝑂𝑢𝑡𝑝𝑢𝑡𝐶 = 48

42

43

Compositional Verification

 𝐺𝐵 = 𝑂𝑢𝑡𝑝𝑢𝑡 < 𝐼𝑛𝑝𝑢𝑡 + 50

44

The	new	contract	for	B	is	not	sufficient	to	prove	the	system-level	contract!	

45

46

Bourbouh,	Hamza,	Pierre-Loic	Garoche,	Christophe	Garion,	Arie	Gurfinkel,	Temesghen	Kahsai,	and	Xavier	Thirioux.	"Automated	analysis	of	Stateflow	models."	(2017):	144-161.

Stateflow verification

47

Code Generation

• Verimag	Lustre	&	C	(through	LustreC)	

• Rust	(through	Kind	2)	

• Compiler	validation	through	equivalence	testing	and	equivalence	checking

48

Mavridou,	A.,	Bourbouh,	H.,	Garoche,	P.L.,	Giannakopoulou,	D.,	Pressburger,	T.	and	Schumann,	J.,	2020,	March.	Bridging	the	gap	between	requirements	and	Simulink	model	analysis.	
In	Joint	26th	International	Conference	on	Requirements	Engineering:	Foundation	for	Software	Quality	Workshops,	Doctoral	Symposium,	Live	Studies	Track,	and	Poster	Track.

Connection with FRET

• Import	FRET	requirements	in	CoCoSim	

• Automated	generation	of	Simulink	monitors	based	on	traceability	data	

• Analysis	results	can	be	traced	back	to	original	FRET	requirements

49

Model	Information	(JSON)

Export	CoCoSpec	(Lustre)	+	Traceability	data

FRET	Requirements

50

51

Test-case generation

• Random	test	generation	(Simulink)	
• MC/DC		
• Mutation-based

via	LustreC	(Work	in	Progress)

52

53

54

Thank you!
https://github.com/NASA-SW-VnV/CoCoSim

Andreas	Katis	(andreas.katis@nasa.gov)	
Guillaume	Brat	(guillaume.p.brat@nasa.gov)	
Pierre-Loïc	Garoche	(pierre-loic.garoche@enac.fr)

https://github.com/NASA-SW-VnV/fret

Anastasia	Mavridou	(anastasia.mavridou@nasa.gov)	
Thomas	Pressburger	(tom.pressburger@nasa.gov)	
Johann	Schumann	(johann.schumann@nasa.gov)	
Andreas	Katis	(andreas.katis@nasa.gov)	
Khanh	Trinh	(khanh.v.trinh@nasa.gov)

55

https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/NASA-SW-VnV/CoCoSim
mailto:andreas.katis@nasa.gov
mailto:guillaume.p.brat@nasa.gov
mailto:pierre-loic.garoche@enac.fr
mailto:andreas.katis@nasa.gov
mailto:guillaume.p.brat@nasa.gov
mailto:pierre-loic.garoche@enac.fr
https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/fret
mailto:anastasia.mavridou@nasa.gov
mailto:tom.pressburger@nasa.gov
mailto:johann.schumann@nasa.gov
mailto:andreas.katis@nasa.gov
mailto:khanh.v.trinh@nasa.gov
mailto:anastasia.mavridou@nasa.gov
mailto:tom.pressburger@nasa.gov
mailto:johann.schumann@nasa.gov
mailto:andreas.katis@nasa.gov
mailto:khanh.v.trinh@nasa.gov

