INTELLIGENT

Il(=)ll SYSTEMS
|

Requirements elicitation,

analysis and verification using
FRET and CoCoSim

Andreas Katis1.2

FEANICSES 2022, December 6, Toulouse, France

1 Employed by KBR; NASA Ames Research Center, CA, USA
2

Johann Schumann, Matt Knudsen, Teme Kahsai, Noble Nkwocha, Katerina

80%
60%
40%
20%

100%

sjuapuodsal Jo %

0%

UOIINIIX3 PUB UOIHUIBP 1S3
aIN1RNYIY

sdnq uolnjeigaju| pue aoeuIU|

uoleawnoop Fuoim/3ulpes|siw
‘Buiapo/uonejuawa)duwy|
si0113
xejuAs :Juijapoy /uonejuawa|dw|

T
—_
T
(]

s8nq uonezijeiyul :|ein3anIS
sgnq Buissasolid :jeinyoniis

sgnq 2130 :|einioniis

Type of bugs

9ouanbas pue |oiu0d :jeININIIS
paiejas udisaq
1981e3 Suinow :syusawaanbay

A10121pe1u0d :suawalinbay

poojsiapunsiw/snongique
:'sjuawannbay

919|dwooul :syuawannbay

M in models

B in auto-generated code

Goseva-Popstojanova, Thomas Kyanko, "Report: Survey on Model-Based Software

Engineering and Auto-Generated Code” NASA/TM-2016-219443, 2016.

UOIINIBX3 PUB UOIYUIIP 1S3
aIN1RNYIY

sdnq uolnjeigaju| pue aoeuIU|

uoleawnoop Fuoim/3ulpes|siw
‘Buiapo/uonejuawa)duwy|
si0113
xejuAs :Juijapoy /uonejuawa|dw|

Noble Nkwocha, Katerina

T
—_
T
(]

s8nq uonezijeiyul :|ein3anIS
sgnq Buissasolid :jeinyoniis

sgnq 2130 :|einioniis

Type of bugs

aouanbas pue |013u00 :|eININIIS
paie|al udisaqg

1981e1 Suinow :sjuawalinbay

A10121pe1u0d :suawalinbay

poojsiapunsiw/snongique

:'sjuawannbay

B 515/ dw ool :suawaninbay
|

100%
80%
60%
40%
20%

0%

sjuapuodsal Jo %

B in auto-generated code
, Teme Kahsai,

Matt Knudsen

U

M in models

Johann Schumann

Goseva-Popstojanova, Thomas Kyanko, "Report: Survey on Model-Based Software

NASA/TM-2016-219443, 2016.

¥

-Generated Code”

Engineering and Auto

language of developers forced to write reqgs

Lockheed Martin Cyber-Physical System Challenge,
component FSM:

» Exceeding sensor limits shall latch an autopilot pullupywhen the pilot is not in
control (not standby) and the system is Whout failures (not apfail).

every time these conditions hold or only when they become true?

e The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

* The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

* The autopilot shall change states from NOMINQL to STANDBY when the pilotis in
control (standby).

* The autopilot shall change states from MANEUVER to S BY when the pilot is
in control (standby) and sensor data is good.

are these requirements consistent? does my model/code satisfy them?

language formal analysis tools understand

var autopilot: bool = (not standby) and supported and (not
apfail);

var pre_autopilot: bool = false -> pre autopilot;

var pre_limits: bool = = false -> pre 1limits;

guarantee "FSM-001v2" S((((((autopilot and pre_autopilot and
pre_limits) and (pre (not (autopilot and pre_autopilot and
pre_limits)))) or ((autopilot and pre_autopilot and
pre_limits) and FTP)) => (pullup)) and FTP), ((((autopilot
and pre_autopilot and pre_limits) and (pre (not (autopilot
and pre_autopilot and pre_limits)))) or ((autopilot and
pre_autopilot and pre_limits) and FTP)) => (pullup)));

= FRET Projects v m

Total Projects Total Requirements Formalized Requirements System Components Requirement Size

19 356 80.34 52 29378 vytes

Ligjuld_mbxer Undefined ProjectiD

TEST TEST-TCND-N

A0S when occurred(7,persisted(2,fault)) the sw shall

BIOSEN immediately satisfy q

TEST

when not in m mode when p the sw shall always satisfy r

LM_requirements TEST

LM_AUTOPILOT AP-003b

In rollhold mode RollHoldReference shall immediately

satisfy abs(rollangle)<6 => rollholdreference = 0

TEST TEST-BNDD-RSPNSE

FOL_Rover if P the sw shall within 5 ticks satisfy R

DeepTaxi GPCA_with_modes TEST-ONLY-IN

Demo-FSM ; ’ ~ e o e
only in m, when p, shall the software satisfy pc

Andreas Katis, Anastasia Mavridou, Tom Pressburger, Johann Schumann, Khanh Trinh

David Bushnell, Tanja DeJong, Dimitra Giannakopoulou, George Karamanolis,
David Kooi, Julian Rhein, Nija Shi

«mp&ures + assisks

m
FRETish

when in cruising mode, the altitude_hold_:

skores + dis

Ftajs

00 ' Ol

()
‘ | when in roll_hold mode

‘ 002A

e .
in roll_hold mode Roll#

002B °

AP-003 ° “This requirement is th

connecks + expor&s

FRET Variable Name

ABSOF_ALT_MINUS_ALTIC

ALTITUDE_HOLD

{1888 .

ENFORCED: in every interval where cruising holds. TRIGGER: first
point in the interval. REQUIRES: for every trigger, RES must hold at all
time points between (and including) the trigger and the end of the
interval.

e.xpi.aius

0 1 9 10 11

Diagram Semantics

Intervals.

Future Time LTL

formalizes

(LAST V (cruising -> (altitude hold ->
maintain_altitude)))

Target: altitude_hold_autopilot component.

Past Time LTL

. 2 Step Step
diaghoses - : 5
rue true true true

rue true true true

rue true true true

FRET bridges the gap

Captures requirements in a restricted natural language with
unambiguous semantics

Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

Assists in writing requirements through requirement templates

Formalizes requirements in a compositional (hence maintainable
and extensible) manner

Checks consistency of requirements and provides feedback
Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v for runtime analysis of C programs with Copilot

FRET s rigorous and extensible

semantic templates have RTGIL semantics. FRET generates formulas in future- (finite and infinite-trace)
and past-time metric temporal logics. A verification framework within FRET ensures correctness of
formalization algorithms.

 all aspects of our approach are compositional — based on requirement fields.

[\
f]
i) RES immediately
COND =>
[) I f =)
I ! 7 RES
J never
[1)|
L | - / [[|)
1 COND ' — l
Oboo0b00000600000a > L RES |
TOND always
=>
[PaN)
[_)_ t A4 !
RES eventually

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann:
“Automated Formalization of Structured Natural Language”, Information and Software Technology, 2021

FRET bridges the gap

aptures requirements In a restricted natural language wi
unambiguous semantics: FRETish

o Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

Assists in writing requirements through requirement templates

Formalizes requirements in a compositional (hence maintainable
and extensible) manner

Checks consistency of requirements and provides feedback

Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v for runtime analysis of C programs with Copilot

10

capturing requirements in FRETish

the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

if altitude-hold_selected the altitude _hold_autopilot shall always satisfy maintain_altitude

SCOPE in, before, after, notin, onlyln, onlyBefore, onlyAfter; when omitted, global

null, regular
TIMING immediately, next, always, never, eventually, until, before, for, within, after

RESPONSE satisfaction

160 semantic templates / template keys!

Scopes

The system shall always satisfy count >=0
boot mode the system shall immediately satisfy prompt_for_ password
arming mode shall the system eventually satisfy fired
landing mode the system shall eventually satisfy decrease_speed

« When initialization mode the system shall always satisfy commands_accepted

landing mode shall the system eventually satisfy landing_gear_down

energized mode the system shall always satisfy energized indicator_off

energized mode shall the system eventually satisfy manually _touchable

Scope Intervals

ONLYAFTER

ONLYBEFORE

ONLYIN ONLYIN ONLYIN

NOTIN | NOTIN NOTIN

AFTER

BEFORE

IN L E IN

| S >
FTP t-l1 t t, ty+1 t1 ts ty tetl LAST

13

Scopes (contd)

mode = 4 the watch shall always satisfy alarm_icon_on

persisted(4,high _temperature) the monitor shall until shutoff
satisfy alarm_on

taxiing & receivedClearance the plane shall always satisfy |
takeoff

landed & powerOff the doors shall within 5 seconds satisfy
unlocked

Scope grammar

{ purinG) |

H—s ONLY

|) | scope_mode :

" ()
(2F)

(WHILE)—I scope_condition :

AFTER scope_mode :
BEFORE scope_condition I—f

{ puriNG) {

EXCEPT

{)] scope_mode

‘. ()
(2r)

(WHILE)—I scope_condition :

WHEN NOT

IN)—I scope_mode :

IN scope_mode :

(WHILE)—l scope_condition :

AFTER scope_mode :
BEFORE scope_condition I—f

Conditions

* upon, if, when, where; unless
* Boolean expression

* Trigger: upon the Boolean expression becoming true from being false
in the scope, or being true at the beginning of the scope.

Condition grammar

regular_condition

H—l qualified_conditionl : f (/ 75" qualified_condition2 :)11

qualifier_word

H— —H

il

qualified_condition1

H—I qualifier_ word H pre_condition @ TRUE \
(FALSE)

qualified_condition2

‘m* qualifier_word I—I pre_condition @ #m'
(or) (FALSE)

Timings

In roll_hold mode RollAutopilot shall satisfy if (roll_angle< 6.0 & roll_angle >
-6.0) then roll_hold_reference = 0.0

When currentOverload the circuitBreaker shall, at the timepoint, satisfy shutoff

In landingMode the system shall satisfy LandingGearLowered

The autopilot shall satisfy if allGood then state = nominal

In drivingMode the system shall satisfy cellPhoneOn & !IcellPhoneHandsFree
When errorCondition, the system shall, 4 ticks, satisfy alarmOn

In landing mode, the the system shall 2 ticks satisfy is_stable

When input = 1, the integrator shall, 10 ticks, satisfy output =10

In CountdownMode the system shall, Count =0, satisfy Count >0

The system shall, TakeOff, satisfy CheckListTasksCompleted

FRET bridges the gap

« Captures requirements in a restricted natural language with

Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

Formalizes requirements in a compositional (hence maintainable
and extensible) manner: past, future linear temporal logic, Lustre

« ASSISTS IN Writing requirements through requirement templates
o Checks consistency of requirements and provides feedback
o Connects with analysis tools and exports verification code

v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v for runtime analysis of C programs with Copilot

19

Capturing, explaining and formalizing requirements

Create Requirement ASSISTANT TEMPLATES GLOSSARY

Ready to speak FRETish?
Project
Please use the editor on your left to write your requirement

Requirement ID Parent Requirement ID Demo-FSM
or pick a predefined template from the TEMPLATES tab.

Rationale and Comments

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated

with "*"_ For information on a field format, click on its corresponding bubble.

(SCOPE) (CONDKTIONS) GOMPONENT’) SHALL* @

SEMANTICS

Update Requirement Semantics

ENFORCED: in the interval defined by the entire execution. TRIGGER:
first point in the interval if (altitude_hold_selected) is true and any poir
Test-ALTHOLD Parent Requirement ID LM_requirements v in the interval where (altitude_hold_selected) becomes true (from
false). REQUIRES: for every trigger, RES must hold at all time points
between (and including) the trigger and the end of the interval.

Requirement ID Project

Rationale and Comments ~ beginning of time TC

Rationale

Comments TC = (altitude_hold
the altitude hold autopilot shall maintain altitude whenever altitude hold is selected

lected), Response = (maintain_altitude).

v
Requirement Description
A requirement follows the sentence structure displayed below, where fields are optional unless indicated with "*". For information
on a field format, click on its corresponding bubble.
Future Time LTL A
(scopz) (ONDIT tm) (cor.womsm-) SHALL* (TIMING) GESPONSES') ((LAST V (((! (altitude_hold selected)) & (({! LAST)
@ “ (X (altitude hold selected)))) -> (X (LAST V
(maintain altitude))))) & ((altitude_hold selected)
=> (LAST V (maintain altitude))))
f altitude_hold_selected the altitude_hold_autopilot shall always satisfy maintain_altitude Target: altitude_hold_autopilot component.
. Past Time LTL A
bUt th|S IS not What I mean 0o o SEMANTICS (H ((H (! (altitude hold selected))) |
(maintain altitude)))

_Z Target: altitude_hold_autopilot component.

21

getting to the right requirement

TAKE1: if altitude_hold_selected the altitude hold autopilot shall always
satisfy maintain_altitude

TAKEZ2: the altitude hold _autopilot shall always

satisfy if altitude_hold_selected then maintain_altitude

beginning of time beginning of time
| I |
TC = (altitude_hold_selected), Response = (maintain_altitude). Response = (altitude_hold_selected => maintain_altitude).

TAKES3: when in cruising mode, the altitude hold _autopilot shall always
satisfy if altitude _hold_selected then maintain altitude

H_.
M = cruising, Response = (altitude_hold_selected =>
maintain_altitude).

22

FRET bridges the gap

« Captures requirements in a restricted natural language with
unambiguous semantics

o Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

o Formalizes requirements in a compositional (hence maintainable
and extensible) manner

o Checks consistency of requirements and provides feedback
o Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v for runtime analysis of C programs with Copilot

23

Assistance: Requirement templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

The autopilot shall change states from TRANSITION to STANDBY when the pilot is in
control (standby).

The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

24

Requirement templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

The autopilot shall change states from TRANSITION to STANDBY when the pilotis in
control (standby).

The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

The autopilot shall change states from NOMINAL to MANEUVER when the sensor
data is not good.

The autopilot shall change states from NOMINAL to STANDBY when the pilot is in
control (standby).

The autopilot shall change states from MANEUVER to STANDBY when the pilot is in
control (standby) and sensor data is good.

25

Requirement templates

Create Requirement

Requirement ID Project

FSM 002 Parent Requirement ID LM_requirements v

Rationale and Comments A

Rationale

Comments

The autopilot shall change states from TRANSITION to STANDBY when the pilot is in control
(standby).

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated with "*". For information
on a field format, click on its corresponding bubble.

RESPONSES*

S)

(component| shall always satisfy if (input_state| & condition]) then [outfut_state|

ASSISTANT EM

Template

Change State v

Choose a predefined template

This template describes how the state of a finite-state-machine
component changes. It describes the input state and some
conditions based on which the change must occur. The
corresponding output state must reflect the required change.
The input and output states have a pre - post- relationship

Examples:

|' FSM_AutopiIot' shall always satisfy if (

| state = ap_standby_state \ & |' standby & ! apfail D then

|v STATE = ap_transition_state |

26

FRET bridges the gap

« Captures requirements in a restricted natural language with
unambiguous semantics

o Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

o Assists in writing requirements through requirement templates

e Formalizes requirements in a compositional (hence maintainable
and extensible) manner

o Connects with analysis tools and exports verification code
v for model checking Simulink models with CoCoSim
v for model checking Lustre code with Kind2

v for runtime analysis of C programs with Copilot

27

Checking consistency

Lockheed Martin Cyber-Physical System Challenge, component FSM:
* The autopilot shall change states from TRANSITION to STANDBY when the pilot is in

control (standby).

* The autopilot shall change states from TRANSITION to NOMINAL when the system
is supported and sensor data is good.

28

Checking consistency

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilot is in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state:

29

Checking consistency

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilotisin
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state: \/

Condition 1: pilot is in control ‘/
Condition 2: system is supported
sensor data is good \/

30

Checking consistency

Lockheed Martin Cyber-Physical System Challenge, component FSM:

* The autopilot shall change states from to STANDBY when the pilotis in
control (standby).

* The autopilot shall change states from to NOMINAL when the system
is supported and sensor data is good.

Input state: \/ /

Condition 1: pilot is in control
Condition 2: system is supported

sensor data is good \/

Output state 1: STANDBY @
Output state 2: NOMINAL

31

Checking Realizability

* Realizable requirements: A system exists that satisfies the
requirements for every valid environment input

* Unrealizable requirements: Diagnostic analysis
 |ldentify minimal sets of unrealizable requirements in specification
e Counterexamples
« Simulation of conflicting requirements

* Compositional Realizability Checking

File View Help

=
=" VARIABLE MAPPING REALIZABILITY
N

t
- — Im ut 1
= FSM v fr——

Compositional [] Monolithic 900 | CHECK HELP

<>

cco cc1 cc2
8%
1 L3

ID ™ Summary

0 FSMO001 FSM shall always satisfy (limits & !standby & !apfail & supported) => pullup

atisfy (st y & state = ap_transit ATE = tanc tate

Rows per page: 10 1-100f 13 >

Anastasia Mavridou, Andreas Katis, Dimitra Giannakopoulou, David Kooi, Thomas Pressburger, Michael W. Whalen:
From Partial to Global Assume-Guarantee Contracts: Compositional Realizability Analysis in FRET. FM 2021. 33

FRET bridges the gap

« Captures requirements in a restricted natural language with
unambiguous semantics

Explains formal semantics in various forms: natural language,
diagrams, interactive simulation

Assists in writing requirements through requirement templates

Formalizes requirements in a compositional (hence maintainable
and extensible) manner

Checks consistency of requirements and provides feedback

e Connects with analysis tools and exports verification code

v for model checking Simulink models with CoCoSim

v for model checking Lustre code with Kind2

v for runtime analysis of C programs with Copilot

34

Operation

Concept of Lo L and
Operations "e”;'f,gtm“ Maintenance
] : Validation
Project IRequirements System
Definition and | Verification
| Architecture [and Validation
FRET | _ 1 Integration, _
| Detailed | Test, and Project
Design Verification Test and
— Integration
CoCoSim — 1

IKOS - >

Osborne, Leon F., Jeff Brummond, Robert Hart, Mohsen Zarean, and Steven M. Conger. Clarus: Concept of operations. No. FHWA-JPO-05-072. United States.

. . . 35
Federal Highway Administration, 2005.

CoCoSim: an open-source MATLAB plugin for

* Contract-based Compositional Verification of Simulink/Stateflow Models

 Simulink/Stateflow translation to Verimag Lustre / C

« Work in progress: Link with requirements specification tools (FRET), Test Case
Generation

Bourbouh, Hamza, Marie Farrell, Anastasia Mavridou, Irfan Sljivo, Guillaume Brat, Louise A. Dennis, and Michael Fisher. "Integrating formal verification and assurance: an inspection rover case study."
In NASA Formal Methods Symposium, pp. 53-71. Springer, Cham, 2021.

Mavridou, Anastasia, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Pressburger, Mohammad Hejase, Pierre-Loic Garoche, and Johann Schumann. "The ten lockheed martin cyber-physical
challenges: formalized, analyzed, and explained." In 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 300-310. IEEE, 2020.

Mavridou, Anastasia, Hamza Bourbouh, Pierre Loic Garoche, Dimitra Giannakopoulou, Thomas Pessburger, and Johann Schumann. "Bridging the gap between requirements and Simulink model
analysis." In Joint 26th International Conference on Requirements Engineering: Foundation for Software Quality Workshops, Doctoral Symposium, Live Studies Track, and Poster Track. 2020.

Bourbouh, Hamza, Pierre-Loic Garoche, Thomas Loquen, Eric Noulard, and Claire Pagetti. "CoCoSim, a code generation framework for control/command applications An overview of CoCoSim for multi-
periodic discrete Simulink models." In 710th European Congress on Embedded Real Time Software and Systems (ERTS 2020). 2020.

Bourbouh, Hamza, Guillaume Brat, and Pierre-Loic Garoche. "CoCoSim: an automated analysis framework for Simulink/Stateflow." In Model Based Space Systems and Software Engineering-European
Space Agency Workshop (MBSE 2020). 2020.

36

CoCoSim Architecture

Simulink Blocks .
. Public
Pre-Processing
. API
Engine
Internal
Representation Public
Generation API
Engine
Intermediate formal .
. Public
Language Generation
. API
* Engine

% LustreC

Public
API

Compiler Validation || Public Verification | Public | | Test Case generation || Public Ev'de';?e/r ?gi/g:ants
Engine API AP| Engine API gener
* * Engine
< Kind 2

37

Verification

* Formal verification: Prove that a system always conforms to our
requirements

* By constructing a mathematical proof!
* Model checking

inputs

Does Controller satisfy

Requirements] ?
output action

A\ 2 \ 2
AG safe
»()—»(f %a . FpAgq
satisfy ?

Mathematical Model Formal notation

Does

Requirements are expressed using the
CoCoSim library.

T T T T T T T T T |
P goal I
&B |
goal p| start CO ntract valid |- I
planToDest I
(1) P obstacle: - I
obstacles |l — _— _Contract ComputePlanToDesfination__ ___ __,
L——p{ goal planToDest
planToDest
(2) o) sta
start

ComputePlanToDestination

39

planToDest

P start
assume
o Assume Ly assumes
start_different_from_goal
P plan guarantee
G uarantee I—b guaranteel
plan_steps_in_bounds
valid
P goal
Guarantee ouaranee
plan)| guarantee2
plan_ends_in_goal
plan
r nt guarantee
| start G ua a ee _|—> guarantee3
plan_starts_in_start
Validator

40

valid

\ + u I [(QJFindF v A v
» Open Varnable »
New New New Of Compare mport ve
Script Uive Script v - Data Workspace [y Clear Workspa
)] /| » home » akatis » Documents » CoCoSim » demo

~ =

Current Folder

Name

% absolute.six

Details

Command Window
New to MATLAB? See resources for Gatting Started

0

»> start_c s1m
e R
WELCOME TO COCOSIM (NASA Ames)
R R R R R R R R R
guration
From https://g1thub.com/NASA-SW-VnV/CoCoSim
* branch installation_fix -> FETCH_HEAD
Already up to date.

Already on ‘cocosim_nasa'

Your branch 15 up to date with rigin
From https://g1thub.com/coco-team/cocoS
* branch CocC
Already up to date.

Already on '‘master’

From https://g1thub.co
* branch

/hbourbouh/cocosim-external-libs
CH_HEAD

ter » FE

ady run and will be 1gnored.
© 1t run “tools_config" in your Matlab Command Window.

change pre-processing configuration.

««. Configuration 1s Done

ck here to start with & simple verification examp

m

» |\-’ —1"7”"‘ ge [f - | ‘) ommun ty
LS alyce LOue . - J g3 Lo unity
- a Q) F y (& &] LF) -
un and Time W "{‘C]L{‘St >upp ort
Favorte Simulink Layout [Add-Ons Help
. (¢ Clear nmands w v - - =] MATLAB

Workspace

Name

m

vero

Value

Compositional Verification

Example (to prove)
A > A,
Ag A G, 2 Ag

ASAGAAGBQAC
As/\GA/\GB/\GceGS

(Ag) Assumption: Input < 10
(Gg) Guarantee: Output < 50

(A,) Assumption: Input < 20
(G,) Guarantee: Output <
2*Input

(Ag) Assumption: Input < 20
(Gp) Guarantee: Output < Input + 15

(Ac) Assumption: none
(Gc) Guarantee: Output =
Inputl + Input2

Input, =9, Output, = 17, Outputz = 31, Output- = 48

42

New New New

pt Lwve Script ~

ABC.slx (Simulink Model)

Analyze Code IS J
' i o Preferences 9 ol
un and Time W
Simulink L3 it Y Set att ns Help
lear nmands - v - v > Learr

Command Window

New to MATLAB? See resources for Gatting e
»» start_cocosim
A A A
WELCOME TO COCOSIM (NASA Ames)
R R R R R R R R

... Starting cocoSim configuration
From https://g1thub.com/NASA-SW-vnV/CoCoSim
* branch installation fix -> FETCH HEAD

Already up to date.

Already on ‘'cocosim_nasa'

Your branch 1s up to date with 'origin/cocosim_nasa
From https://g1thub.com/coco-team/coco
* branch cocosim _nasa -> FETCH_HEAD
Already up to date.

Already on ‘'master’

i

From https://qg1thub.com/hbourbouh/cocosim-external-libs

* branch CH_HEAD

Already up to date.
Tools config 15 already run and will be 1gnored.
To force 1t run "tools_config" in your Matlab Command Window.

Click here to change pre-processing configuration.
... Configuration 1s Done

Click here to start with & simple verification example.

Lommun "j‘

v Workspace v

X Name Value

Compositional Verification

Example (to prove)
As > A,

As/\GA/\GBeAC
ASAGAAGBAGCQGS

(Ag) Assumption: Input < 10
(Gs) Guarantee: Output < 50

(A,) Assumption: Input < 20
(G,) Guarantee: Output <
2*Input

(Ac) Assumption: none
(Gc) Guarantee: Output =
Inputl + Input2

(Ag) Assumption: Input < 20
(Gg) Guarantee: Sutprt-—<trpet—tits-

Gy = Output < Input + 50

44

Verification Summary

ABC PP/S/C__ abstracted/C

Result

o

ABC PP/S/B__abstracted/B

Result

o

ABC PP/S/A __abstracted/A

Result

(%]
ABC_PP/S
Abstract C Abstract B Abstract A Abstract C
v v v v
v X v v

The new contract for B is not sufficient to prove the system-level contract!

Result

45

ABC_PP/S

Time 0
Input (input) 9
Output (output) 50
C__abstracted (local) 50
A__abstracted (local) 17
B__abstracted (local) 33

(A) Assumption: Input < 10
(Gs) Guarantee: Output < 50

(A,) Assumption: Input < 20
(G,) Guarantee: Output <
2*Input

(Ac) Assumption: none
(G.) Guarantee: Output =
Inputl + Input2

(Ag) Assumption: Input < 20
(Gg) Guarantee: Sutput—<tapuit—i—ts—

Gg = Output < Input + 50

46

Stateflow verification

SIMULATION DEBUG MODELING
Jopen v @@ = - Stop Time \mn ~ =
St - g el g @ P % .
New Library | Log Active Add Step Run Step LED)
v & Print ~ Browser State Output Port o Fast Restart Back v~ Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS x
<« 4 bacteriaPopulation
© [*a]bact /_PP b [pa]ba Pt » Pbact p v
«
@
=] increasing
o entry:
N prePopulation = population,
(1) [Ty *Coutl »(1) o population = prePopulation * 2.0;
population0 s population ® I .
i i @ oputation < 32.0
bacteriaPopulation : o [E’ P!] I
m entry: . . L“Tpopulation == 32.0] Qi) -
prePopulation = population0; =)3 ~| prePopulation = population;
C] ® population = population0; 2
=
]

[populatiop > 32.0]

bacteriaPopulationSpec

decreasing

entry:

prePopulation = population,
population = prePopulation / 2.0;

-]

Ready 175% FixedStepDiscrete

Bourbouh, Hamza, Pierre-Loic Garoche, Christophe Garion, Arie Gurfinkel, Temesghen Kahsai, and Xavier Thirioux. "Automated analysis of Stateflow models." (2017): 144-161.

47

Code Generation

* Verimag Lustre & C (through LustreC)
* Rust (through Kind 2)

* Compiler validation through equivalence testing and equivalence checking

MATLAB R2019b

EDITOR B4Rl ®eO

L ¢ =] [gJFind Files <<« Insert fx -
A E =[] Go T C t %
:| Compare ~ oTov Commen
New Open Save = P o R
- - > &Print v Indent 3 &
FILE NAVIGATE EDIT

Breakpoints

Q Find ~

BREAKPOINTS

Sign In

<= = (5] 3 @/ » home » akatis » Documents » CoCoSim » demo » cocosim_output » absolute PP » C
_output/absolute_PP/C/absolute_PP.LUSTREC.

Current Folder ®
|Name |

ocuments/CoCoSim/demo/coco:
absolute_PP.LUSTREC.c L+

e <assert.h=>

[) absolute_PP.LUSTREC.c

[) absolute_PP.LUSTREC.h

[) absolute_PP.LUSTREC lusic

[) absolute_PP.LUSTREC .makefile
[) absolute_PP.LUSTREC_alloc.h
[) absolute_PP.LUSTREC_main.c

"absolute_PP.LUSTREC.h"

1

2

3

4 /% C code generated by lustrec
5 Version number 1.7-1-unstable
6

7

8

Code is €99 compliant
Using (double) floating-point numbers */

9 /* Import dependencies */

10

11 * Global constants (definitions) *
12

13 /* Struct definitions */

14 struct absolute_PP_mem {struct absolute_PP_reg {long long int _ absolute_PP_2;
15 double __absolute_PP_3;

16 b _reg;

17 struct _arrow_mem *n1i_0;

18 1;

21 void abs_int_step (long long int x,
22 long long int (*y)
) {

25 if ((x »=0)) {
26 *y = X;

27 } else {

28 *y = (- x);
29 ¥

30 return;

31}

Command Window

New to MATLAB? See resources for Getting Started.

x| @ |

¥ v -
s_config" in your Matlab Command Window.
ation] C code is generated in : /home/akatis/Documents/CoCoSim/demo/cocosim_output/absolute_PP/C

Details A

LT i I

48

C / CPP source or header file

Ln 32

Col

1

Connection with FRET

* Import FRET requirements in CoCoSim

* Automated generation of Simulink monitors based on traceability data

* Analysis results can be traced back to original FRET requirements

Cyber-Physical V&V Challenge Problems
LM Aeronautics Quantum Information Science Research Team 2015
Copyright © 2015 Lockheed Martin Corporation

boolean

standby

standby
boolean

apfai

apfail
P pullup

boolean

supported pullup

supported

boolean
(4)y———»imits

limits

FiniteStateMachine

Mavridou, A., Bourbouh, H., Garoche, P.L., Giannakopoulou, D., Pressburger, T. and Schumann, J., 2020, March. Bridging the gap between requirements and Simulink model analysis.
In Joint 26th International Conference on Requirements Engineering: Foundation for Software Quality Workshops, Doctoral Symposium, Live Studies Track, and Poster Tr4ek.

Eile | view Help

RET

FRET Requirements

= . 9
= Requirements: CoCoSim_FSM
Q F= =
<>
Status D ™ Summary Project
2
- FSM-001V1 [+ FSM shall always satisfy (limits & Istandby & lapfail & supported) => pullup CoCoSim_FSM
PN
- [+] if autopilot & pre_autopilot & pre_limits FSM shall immediately satisfy pullup CoCoSim_FSM
- [+ if htlore3_autopilot & htlore3_notpreprelimits & pre_imits FSM shall immediately satisfy pullup CoCoSim_FSM
- [+] FSM_Autopilot shall always satisfy (standby & state = ap_transition_state) => STATE = ap_standby_state CoCoSim_FSM
- FSM-00 [+ FSM_Autopilot shall always satisfy (state = ap_transition_state & good & supported) => STATE = ap_nominal_state CoCoSim_FSM
- FSM-004 [+ FSM_Autopilot shall always satisfy (! good & state = ap_nominal_state) => STATE = ap_maneuver_state CoCoSim_FSM
- [+] FSM_Autopilot shall always satisfy (state = ap_nominal_state & ! good & ! standby) => STATE = ap_maneuver_state CoCoSim_FSM
- [+] FSM_Autopilot shall always satisfy (state=ap_nominal_state & standby) => STATE = ap_standby_state CoCoSim_FSM
- [+] FSM_Autopilot shall always satisfy (state = ap_maneuver_state & standby & good) => STATE = ap_standby_state CoCoSim_FSM
- FSM-0C [+ FSM_Autopilot shall always satisfy (state = ap_maneuver_state & supported & good) => STATE = ap_transition_state CoCoSim_FSM
perpage: 10 v 1-100f 19

Model Information (JSON)

Cyber-Physical V&V Challenge Problems

Copyright © 2015 Lockheed Martin Corporation

LM Aeronautics Quantum Information Science Research Team 2015

boolean
standby

standby

boolean
— apfail

apfail

supported

limits

Requirement Variables to Model Mapping: LM_requirements

Export Language * -
Autopilot
FSM
Corresponding Model Component
fsm_12B/FiniteStateMachine/Manager - -

FRET Variable Name Model Variable Name Variable Type
APFAIL apfail Input
AUTOPILOT Internal
HTLORE3_AUTOPILOT Internal
HTLORE3_NOTPREPRELIMITS Internal
LIMITS supported Input

Data Type

boolean

boolean

boolean

boolean

boolean

Description

boolean

supported
boolean

limits

pullup

FiniteStateMachine

pullup

Export CoCoSpec (Lustre) + Traceability data

RET

Requirement Variables to Model Mapping: LM_requirements

Export Language *
CoCoSpec v

Autopilot

Corresponding Model Component

fsm_12B/FiniteStateMachine

N -

FRET Variable Name 1

Model Variable Name Variable Type

Data Type

Description

50

9VO0O =

$ = W) 20%0> Thub14PM Q @

@ MATLAB Window Help
® 0 fsm_12B
SIMULATION DEBUG LING FORMAT APPS ? o o
', (1 Open ~ Ui == Stop Time »10 <m : N : @
H Save « o ot 5:7 v v Ndrmal - w “‘/ -
New Library ignal e) Step Run Step Data
v N Print ~ Browser Table @ Fast Restart Back v - Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS a

Jools
IEEEEINCN o rsm.12o |
L 4

® [*afsm_12B b

I W E UES

Cyber-Physical V&V Challenge Problems

Copyright © 2015 Lockheed Martin Corporation

LM Aeronautics Quantum Information Science Research Team 2015

boolean
(1) P standby N
standby

boolean
(2) P apfail
apfail

pullup

boolean
P supported
supported

boolean S
(4) P limits
limits

FiniteStateMachine

222%

pullup

FixedStepDiscrete

51

Test-case generation

* Random test generation (Simulink)
* MC/DC

} via LustreC (Work in Progress)
* Mutation-based

Lustre program

 __ Coverage-based test generator
............................

................. -)

: Mutant Generator ! Y - TS:Test Suite
‘ LustreC -- Compiler

....................

; L}
{Set of mutants} ---» 1

Final Test Suite C program

52

Details

. + ¥ !} (SFind v A o
» Open Varnable » un and
Ne New N f () ave Favorits
Script Uwve Script v v workspace [Clear Work (e ow v ¢ Clear
! 2] / » home » akatis » Documents » CoCoSim » demo »
Current Folder Command Window
Name New to MATLAB? See rasources for Getting Started,
+
> clear
*a ABC slx)
f =

‘& ABC_PP slx

% a ute six

% absolute_PP.six

it c_test.slx

Lommunity

Request Support

= Learn MATLAB

v Workspace

X Name Value

§ Signin

Block Name Name

Unsupported Options

Trigonometry

Operator 'cos + jsin’ is not supported.

Switch

Allow different data input sizes option is not supported.

Relational Operator

Operator "isInf", "isNaN", "isFinite" are not supported.

Merge

- Allow unequal port widths is not supported.
- We support only Merge blocks that are connected to
conditionally-executed subsystem.

Function Call Generator

Number of iterations > 1 is not supported.

For Iterator

- External iteration limit source is not supported.

- External increment is not supported.

- Action Ports inside a For Iterator block should have
"States when execution is resumed" option set to "reset".
- Outports in a conditionally executed Subsystem inside
a For Iterator block should have "Output when disabled"
set to "reset".

- Memory blocks are only allowed in the first level of the
For Iterator Subsystem.

Discrete Pulse Generator

Option "Use external signal” is not supported.

Demux

Bus selection mode should be off.

Selector

"Starting and ending indices (port)" option is not sup-
ported.

Multiport Switch

- "Specify indices" option is not supported.
- Allow different data input sizes is not supported.

Lookup Table blocks

- More than 7 dimensions interpolation is not supported.
- "Intermediate results Data Type" option should be set
to double or single.

From Workspace

"Cyeclic repetition" option is not supported.

Library # supp. | % supp. | Unsupported blocks
Blocks | Blocks

Discontinuities| 11/12 91% Backlash

Discrete 19/21 90% Discrete PID Controller, Discrete PID
Controller (2DOF)

Logic & Bit | 18/19 95% Extract Bits

Operations.

Lookup Ta-| 9/9 100%

bles.

Math Opera- | 31/37 83% | Algebraic Constraint, Complex to

tions. Magnitude-Angle, Complex to Real-
Imag, Find, Magnitude-Angle to Com-
plex, Real-Imag to Complex

Model Verifi- | 11/11 100%

cation

Ports & Sub- | 29/31 93% | While Iterator Subsystem, While Iterator

systems.

Signal At- | 13/14 93% Unit Conversion

tributes.

Signal Rout- | 13/25 52% Data Store Memory, Data Store Read,

ing. Data Store Write, Environment Con-
troller, Goto Tag Visibility, Index Vec-
tor, State Reader, State Writer, Vari-
ant Source, Variant Sink, Manual Variant
Source, Manual Variant Sink

Sinks. 9/9 100% | Visualization blocks are ignored

Sources. 15/26 57% Band-Limited White Noise, Counter
Free-Running, Counter Limited, From
File, From Spreadsheet, Repeating Se-
quence, Repeating Sequence Interpolated,
Repeating Sequence Stair, Signal Editor,
Signal Generator, Waveform Generator

User-Defined 2/15 13% | Argument Inport, Argument Outport,

Functions.

Event Listener, Function Caller, Ini-
tialize Function, Interpreted MATLAB
Function, Level-2 MATLAB S-Function,
MATLAB System, Reset Function, S-
Function, S-Function Builder, Simulink
Function, Terminate Function

Delay When Delay length > 1, the initial condition should be
scalar.

Concatenate Concatenate dimension > 2 is not supported.

Assignment - Outputlnitialize set to 'Specify size for each dimension

in table’ is not supported,
- IndexOptionArray set to 'Starting and ending indices
(port)’ is not supported.

4

Thank youl!

https://github.com/NASA-SW-VnV/fret https://github.com/NASA-SW-VnV/CoCoSim
Anastasia Mavridou (anastasia.mavridou@nasa.gov) Andreas Katis (andreas.katis@nasa.gov)

Thomas Pressburger (tom.pressburger@nasa.gov) Guillaume Brat (guillaume.p.brat@nasa.gov)
Johann Schumann (johann.schumann@nasa.gov) Pierre-Loic Garoche (pierre-loic.garoche@enac.fr)

Andreas Katis (andreas.katis@nasa.gov)

Khanh Trinh (khanh.v.trinh@nasa.gov)

- 19 356 80.34 52 29378 bytes goal
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ :
P
oal start c valid |-
o5 g ontract
WbER . LiquidMixer LM-003
LLLLLLLLLL
..........
............ Undefied projectt planToDest
P TesTTEST -TCND-N
BISEN 1); P obstacles
= obstacles Contract_ComputePlanToDestination
e
aaaaaaaaaaaaaaaaaa . planToDest “ @
planToDest
TTTTTTTTTTTT -RSPNSE
TTTTTTTTTTTTT -IN (2) smrt
start
sssssssssssssssssssssss

ComputePlanToDestination

55

https://github.com/NASA-SW-VnV/CoCoSim
https://github.com/NASA-SW-VnV/CoCoSim
mailto:andreas.katis@nasa.gov
mailto:guillaume.p.brat@nasa.gov
mailto:pierre-loic.garoche@enac.fr
mailto:andreas.katis@nasa.gov
mailto:guillaume.p.brat@nasa.gov
mailto:pierre-loic.garoche@enac.fr
https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/fret
mailto:anastasia.mavridou@nasa.gov
mailto:tom.pressburger@nasa.gov
mailto:johann.schumann@nasa.gov
mailto:andreas.katis@nasa.gov
mailto:khanh.v.trinh@nasa.gov
mailto:anastasia.mavridou@nasa.gov
mailto:tom.pressburger@nasa.gov
mailto:johann.schumann@nasa.gov
mailto:andreas.katis@nasa.gov
mailto:khanh.v.trinh@nasa.gov

